AQUANET

Decentralised and reconfigurable control for water delivery multipurpose canal systems

PTDC/EEA-CRO/102102/2008

Relatório Técnico nº 35/2010

Modelo SIMULINK de um canal piloto
Manual do utilizador

J. M. Lemos, F. C. Machado, N. M. Nogueira, P. O. Shirley

INESC-ID

Julho 2010
Este manual e a actualização do software a que ele diz respeito foi produzido no âmbito do projecto
AQUANET – Decentralised and reconfigurable control for water delivery multipurpose canal systems,

Maneira de citar este relatório:
piloto – Manual do utilizador. INESC-ID, Relatório Técnico nº 35/2010,
http://ramses.inesc.pt/AQUANET
Conteúdos

Lista de Figuras 1

1 Introdução 3

2 Descrição do Canal Piloto de Évora 5
 2.1 Geometria do Canal Automático 6
 2.2 Comportas 6
 2.3 Tomadas e admissão de água no canal 9

3 Introdução rápida ao modelo SIMULINK 11

4 Modelação do Sistema 13
 4.1 Equações de Saint-Venant 13
 4.1.1 Relações entre as variáveis hidráulicas 14
 4.1.2 Declive devido à frição 15
 4.1.3 Regime estacionário do canal 15
 4.2 Característica das comportas 17

5 Métodos Numéricos 19
 5.1 Resolução numérica das equações 19
 5.1.1 Método de Preissmann 20
 5.1.2 Método da colocação ortogonal 21
 5.1.3 Validação do método de Preissmann e da colocação ortogonal 23

6 Biblioteca SIMULINK 27
 6.1 Bloco Simulink do troço de canal 27
 6.2 Bloco Simulink das comportas 27
 6.3 Ligações entre blocos implementados 28
 6.4 Implementação do simulador do canal de Évora 28

7 Validação do Modelo 31
 7.1 Influência dos parâmetros físicos a calibrar 31
 7.2 Resultados obtidos 33

A Método de Newton Aplicado ao Método de Preissmann 35

B Sistema de EDOs para a colocação ortogonal 39
Lista de Figuras

2.1 Canal experimental de Évora. .. 5
2.2 Esquema do canal automático do NuHCC. 6
2.3 Esquema de um troço de canal. .. 7
2.4 Resultados experimental e simulado para a posição de uma comporta. ... 7
2.5 Comporta orifice. ... 8
2.6 Comporta overshot. ... 8
2.7 Resultados experimental e simulado para o sistema MONOVAR. .. 9

4.1 Representação das variáveis hidráulicas de um canal. 14
4.2 Representação de uma seção do canal. 14
4.3 Representação de uma seção do canal, assinalando-se o perímetro hidráulico. 15
4.4 Representação dos níveis de água em regime estacionário, para diversos caudais. 16
4.5 Representação esquemática de uma comporta do tipo orifice. .. 17
4.6 Representação esquemática de uma comporta do tipo overshot. .. 18

5.1 Métodos de resolução de EDPs. .. 19
5.2 Malha do esquema de discretização de Preissmann. 20
5.3 Representação de alguns polinómios de Legendre. 22
5.4 Condições fronteira utilizadas para a simulação. 23
5.5 Comparação dos métodos de resolução. 23
5.6 Resultados simulados para diferentes valores de N. 24
5.7 Comparação da influência do passo temporal dt para os dois métodos. ... 24
5.8 Resultados simulados para diferentes valores de θ. 25
5.9 Influência do parâmetro θ nos regimes transitórios. 25

6.1 Blocos Simulink desenvolvidos. .. 27
6.2 Exemplo de ligações entre blocos Simulink. 28
6.3 Modelo Simulink representativo do canal de Évora. 29

7.1 Resultados simulados para diferentes valores da constante de descarga da comporta intermédia. 32
7.2 Resultados simulados para diferentes valores da constante de descarga da última comporta. 32
7.3 Resultados simulados para diferentes valores do coeficiente de Manning. ... 33
7.4 Comparação entre o nível M1 experimental e simulado. 34
7.5 Comparação entre o nível J2 experimental e simulado. 34
7.6 Comparação entre o nível J3 experimental e simulado. 34
Capítulo 1

Introdução

Este manual dá a informação necessária para a utilização de um modelo SIMULINK do canal piloto do Núcleo de Hidráulica e Controlo de Canais da Universidade de Évora [9]. O software que realiza este modelo pode ser utilizado de duas maneiras:

- De um modo mais simples, em que é fornecido um bloco que representa o canal, tendo como entradas os sinais de comando das comportas e das válvulas de tomada de água laterais, e como saídas a medida dos níveis no início, no meio e no fim de cada um dos quatro troços que compõem o canal. Por forma a ilustrar a sua utilização, o bloco é fornecido com controladores PID que regulam o nível em cada um dos troços.

- De um modo mais flexível, em que é fornecida uma biblioteca de blocos que permite gerar uma grande variedade de estruturas de canais.

Em ambos os casos, trata-se de modelos não lineares, em que os diversos troços são representados pelas equações de Saint-Venant, e que traduzem o funcionamento do canal numa gama ampla de regimes de operação.

Se tem apenas interesse em utilizar o modelo do canal piloto de Évora, sem lhe introduzir alterações estruturais, deverá ler o capítulo 2, em que é feita uma descrição do canal, e em seguida o capítulo 3, em que é feita uma introdução rápida ao bloco SIMULINK que modela esse canal.

Os capítulos 4, 5, 6 e 7 abordam temas mais avançados ou complementares, não sendo necessários para uma utilização básica do modelo.

O capítulo 4 descreve as equações que modelam o canal e que incluem dois tipos de elementos:

- Os troços de canal entre comportas, modelados pelas equações de Saint-Venant;
- As comportas.

O capítulo 5 e os apêndices A e B descrevem os métodos numéricos utilizados para resolver as equações de Saint-Venant.

O capítulo 6 descreve a biblioteca de blocos SIMULINK que podem ser concatenados para construir modelos de canais, ou redes de canais, e que embebem as equações do capítulo 4, através da solução numérica do capítulo 5.

Finalmente, o capítulo 7 mostra resultados de validação do modelo do canal piloto de Évora, cujo bloco é descrito no capítulo 3.
Capítulo 2

Descrição do Canal Piloto de Évora

A figura 2.1 mostra o sistema hidráulico piloto do Núcleo de Hidráulica e Controlo de Canais (NuHCC) da Universidade de Évora [9]. Este é constituído pelos seguintes elementos:

- posto central;
- canal automático;
- canal tradicional;
- dois reservatórios de armazenamento.

Figura 2.1: Canal experimental de Évora.

Na figura 2.1 pode ver-se uma panorâmica destes dois canais, tomada de jusante para montante do canal automático. O canal automático está à esquerda, podendo ver-se em primeiro plano o acesso a um dos poços de medida de nível, situando-se o canal tradicional (não instrumentado) à direita, num plano inferior.

O reservatório mais pequeno e mais elevado, colocado à cabeça do canal automático serve, para além de garantir a alimentação a este canal, para o controlo do funcionamento das duas bombas submersíveis que elevam os caudais necessários a partir de um reservatório maior de armazenamento, colocado a menor cota.

O canal automático é continuado por um canal de retorno (canal "tradicional") que termina no reservatório de armazenamento, canal este que garante que todo o sistema hidráulico funcione em circuito fechado.
O canal automático é controlado por um servidor central equipado com um sistema SCADA, que permite o controlo e monitorização remotos, a partir do posto central. Este sistema permite a exportação dos dados recolhidos para ficheiros de texto, que podem ser facilmente importados por programas de pós-processamento como o Matlab.

![Diagrama de Canal Automático](image)

Figura 2.2: Esquema do canal automático do NuHCC.

2.1 Geometria do Canal Automático

O canal automático, cujo esquema se mostra na figura 2.2, é formado por quatro troços de secção trapezoidal, os três primeiros com 35m e o último (a jusante) com 36m de comprimento. Os três primeiros troços encontram-se terminados por comportas do tipo orifice. O último troço termina numa comporta do tipo overshot.

As características gerais do canal são as seguintes (Fig. 2.3):

- Secção transversal - trapézio, com 0.15m de largura de rasto; declive das espaldas de 1 : 0.15 (V:H); altura de 0.90m;
- Caudal de projecto - 0.09m³s⁻¹
- Comprimento - 141m
- Declive longitudinal médio - 1.5 · 10⁻³

A montante, jusante e no meio de cada troço existem sensores de medida do nível da superfície livre. Estes sensores são constituídos por uma bôia e um medidor da altura da bôia. Foram instalados em poços de fibrocimento com 300mm de diâmetro. Na base desta tubagem foi montado um cotovelo a 90° com o mesmo diâmetro, para ligação ao canal. Os sensores permitem detectar variações de 0.7mm no nível da água.

Utiliza-se a seguinte nomenclatura: Para o troço \(i \), \(i = 1, \ldots, 4 \) as medidas de nível indicadas são designadas respectivamente por \(M_i \) (montante do troço), \(C_i \) (meio do troço) e \(J_i \) (jusante do troço).

Devido à dinâmica dos sensores ser muito rápida quando comparada com a do canal, optou-se por desprezá-la no modelo.

2.2 Comportas

O canal está equipado com quatro comportas verticais planas rectangulares actuadas por motores elétricos. Estas comportas estão colocadas no final de cada troço e os comandos da abertura de cada uma delas, \(u_i \), \(i = 1, \ldots, 4 \) constituem quatro variáveis manipuladas.
A instalação de cada comuta exigiu a adopção de um pequeno troço de canal rectangular (de comprimento 1 m) e a respetiva transição (gradual) de secção trapezoidal para rectangular.

As três primeiras comutas garantem a vazão através de orifício inferior (orifice gate – Fig. 2.5). São constituídas por um tabuleiro rectangular com 0.490 m × 0.900 m.

A última comuta é de tipo especial – descarregador frontal de altura ajustável (overshot gate – Fig. 2.6). Esta comuta, na secção de jusante do canal, permite descartar o caudal em excesso para o canal de retorno e, simultaneamente, regular o último troço do canal automático. É constituída por um tabuleiro rectangular com 0.450 m × 0.700 m.

Na modelação do movimento das comutas teve-se em conta a saturação dos seus actuadores, impondo limitações na velocidade de abertura e de fecho destas. Considerou-se a saturação como sendo simétrica, uma vez que as comutas são suportadas por engrenagens com uma elevada relação de desmultiplicação, sendo a influência da água ou do peso da comuta desprezível. Desprezaram-se dinâmicas adicionais das comutas por estas serem muito mais rápidas que o período de amostragem e que outros elementos do canal (Fig. 2.4), assumindo-se que estas operam sempre à velocidade máxima. Através de regressão linear estimou-se o valor da velocidade das comutas de 3.8886 × 10⁻³ m s⁻¹.

Figura 2.3: Esquema de um troço de canal.

Figura 2.4: Resultados experimental e simulado para a posição de uma comuta.
Figura 2.5: Comporta orifice.

Figura 2.6: Comporta overshot.
2.3 Tomadas e admissão de água no canal

A montante de cada comporta existe uma tomada de água. Estas tomadas são constituídas por um orifício existente na parede do canal. O caudal derivado é descarregado para o canal de retorno ao reservatório (canal tradicional). As tomadas de água são constituídas por uma válvula do tipo borboleta motorizada, por um medidor de caudal electromagnético e respectivos troços de tubagem em aço inoxidável com 150 mm de diâmetro.

Os comandos das aberturas das válvulas, designadas por \(D_i \), \(i = 1, \ldots, 4 \), são variáveis que podem ser impostas pelo sistema SCADA, podendo assim gerar perturbações no sistema.

No reservatório de admissão ao canal automático está instalada uma válvula de regulação do tipo \textsc{MONOVAR}, com 300 mm de diâmetro, medidor electromagnético de caudal e um actuador eléctrico de regulação. O sistema já apresenta um controlador implementado, sendo a relação entre a referência e o caudal de saída representada por um sistema linear de primeira ordem com um atraso. Através do método dos mínimos quadrados\(^1\), obteve-se a seguinte estimativa para esta função de transferência:

\[
F(s) = \frac{e^{-10.5s}}{18.7s + 1} \tag{2.1}
\]

Na Fig. 2.7 representa-se a comparação entre o caudal de saída experimental e simulado para o sistema \textsc{MONOVAR}, para uma referência do tipo escalão\(^2\).

![Figura 2.7: Resultados experimental e simulado para o sistema MONOVAR.](image_url)

\(^1\)Recorreu-se à ferramenta \textit{Ident} do \textit{Matlab}.

\(^2\)Devido à insuficiência de dados experimentais do sistema \textsc{MONOVAR}, apenas se representam os dados do conjunto de treino.
Capítulo 3

Introdução rápida ao modelo SIMULINK

Este capítulo proporciona uma introdução rápida à utilização do bloco SIMULINK que permite a simulação do canal piloto descrito no capítulo 2.

Este bloco está marcado com a cor azul no ficheiro pid_montante_ref2.mdl

As entradas e saídas são tal como descrito no capítulo 2.

Por forma a demonstrar a utilização deste bloco, neste ficheiro os níveis de jusante de cada troço são controlados por quatro controladores PID que manipulam a comporta final de cada troço. Para fazer uma simulação, clique duas vezes no botão *Inicializa controladores PID* e, em seguida, um botão da barra do SIMULINK que inicia a simulação. Pode visualizar os resultados clicando no botão de *scope*. Há quatro gráficos, um para cada um dos controladores. Em cada caso a cor amarela corresponde à referência, a cor azul ao nível e a cor rosa ao comando da abertura da comporta.

Para testar outros controladores, basta remover os PID e instalar os blocos desejados.

Neste bloco, utiliza-se a técnica de colocação ortogonal para resolver as equações de Saint-Venant (ver capítulos subsequentes).

Pode alterar alguns parâmetros clicando no bloco, o que abre um menu de escolha.
Capítulo 4

Modelação do Sistema

A modelação do sistema em estudo foi feita recorrendo à sua descrição através de equações diferenciais parciais. Para resolver estas equações foram utilizados o método de Preissmann e o método da colocação ortogonal, descritos no Capítulo 5.

4.1 Equações de Saint-Venant

O escoamento da água em superfície livre num troço de canal aberto é descrito pelas equações de Saint-Venant que constituem um sistema de equações diferenciais parciais de primeira ordem, não lineares e hiperbólicas. Estas equações são obtidas a partir dos princípios da conservação da massa e conservação do momento aplicados a um volume elementar de fluido, tendo em conta as seguintes hipóteses simplificativas:

- o escoamento é unidimensional;
- o declive longitudinal S_0 do canal é suficientemente reduzido para se poder fazer a aproximação $\sin(S_0) = S_0$;
- a densidade da água ρ é constante;
- a distribuição das pressões é hidrostática;
- os efeitos da viscosidade interna são negligenciáveis face ao atrito externo.

Nestas condições, as equações são [2]:

$$ \frac{\partial A}{\partial t} + \frac{\partial Q}{\partial x} = q_l \tag{4.1} $$

$$ \frac{\partial Q}{\partial t} + \frac{\partial Q^2/A}{\partial x} + gA \frac{\partial h}{\partial x} + gA(S_f - S_0) = kqV \tag{4.2} $$

em que:

- t variável temporal [s]
- x variável espacial [m], orientada no sentido do escoamento
- $A(x, t)$ secção submersa [m2]
- $Q(x, t)$ caudal [m3s$^{-1}$]
- $q_l(x, t)$ débito lateral por unidade de comprimento [m2s$^{-1}$], $q_l > 0$: entra, $q_l < 0$: sai
- k constante
 - entrada de água: $q_l > 0 \Rightarrow k = 0$
 - saída de água: $q_l < 0 \Rightarrow k = 1$
- \(g\) aceleração da gravidade \([\text{ms}^{-2}]\)
- \(h(x, t)\) cota da água relativamente ao fundo \([\text{m}]\)
- \(S_f(x, t)\) declive devido à fricção
- \(V(x, t)\) velocidade do escoamento \([\text{ms}^{-1}]\)

Ao longo deste trabalho considera-se que o débito lateral \(q_l(x, t)\) é nulo.

4.1.1 Relações entre as variáveis hidráulicas

Um troço de canal é completamente caracterizado, num dado instante, pela distribuição da massa de água (representada por \(A(x, t)\) ou \(h(x, t)\)) e pela distribuição de momentos (quantificada por \(Q(x, t)\) ou \(V(x, t)\)) (Fig. 4.1). Optou-se neste trabalho por formular o problema em termos das variáveis nível da água e caudal da água, podendo-se no entanto recorrer a qualquer outra combinação. Para a obtenção de uma solução das equações de Saint-Venant são necessárias duas condições iniciais, \(Q(x, 0)\) e \(h(x, 0)\), e duas condições fronteira, tendo-se utilizado \(Q(0, t) = Q_0(t)\) e \(Q(L, t) = Q_L(t)\), isto é, a imposição de caudais nas extremidades do troço\(^1\).

![Figura 4.1: Representação das variáveis hidráulicas de um canal.](image1)

Por forma a estabelecer a relação entre as variáveis atrás mencionadas, considere-se uma secção transversal do canal à distância \(x\) da origem. A relação entre a secção submersa \(A(x, t)\) e o nível da água \(h(x, t)\) é obtida, genericamente, integrando (em altura) a largura do segmento infinitesimal de água, \(l(x, h)\) (ilustrado na Fig. 4.2):

\[
A(x, t) = \int_0^{h(x, t)} l(x, h)dh
\]

Figura 4.2: Representação de uma secção do canal.

\(^1\)É necessária uma condição fronteira para cada extremidade do troço, podendo estas ser dadas em termos das variáveis hidráulicas utilizadas.
Para uma seção trapezoidal de largura inferior B e declive das espaldas S_l, esta relação traduz-se por:

$$A(x,t) = h(x,t) \cdot (B + h(x,t) \cdot S_l)$$ (4.4)

No caso de uma seção rectangular as espaldas são verticais, $S_l = 0$, e a relação (4.4) simplifica-se em:

$$A(x,t) = h(x,t) \cdot B$$ (4.5)

O caudal que atravessa uma dada seção transversal corresponde ao fluxo do vetor velocidade através dessa superfície. Supondo escoamento unidimensional (uma das hipóteses admitida na derivação das equações de Saint-Venant), esta relação simplifica-se em:

$$Q(x,t) = V(x,t) \cdot A(x,t)$$ (4.6)

4.1.2 Declive devido à fricção

O declive de fricção S_f representa o efeito dos atritos entre o líquido e a estrutura física do canal, sendo modelado através da fórmula de Manning-Strickler [2]:

$$S_f = \frac{Q|Q|n^2}{A^2 R^{1/3}}$$ (4.7)

em que:

- R raio hidráulico [m]
- n coeficiente de Manning [m$^{-1/3}$]

O raio hidráulico é obtido através do perímetro hidráulico P, o qual consiste no comprimento da curva que separa a água da estrutura do canal, tal como se representa na Fig. 4.3.

$$R = \frac{A}{P}$$ (4.8)

![Figura 4.3. Representação de uma seção do canal, assinalando-se o perímetro hidráulico.](image)

O coeficiente de Manning é uma característica do material do canal e pode ser estimado com recurso a tabelas.

4.1.3 Regime estacionário do canal

Assumindo que as variáveis h e Q são constantes no tempo, e que não existem perdas, obtém-se o regime estacionário do canal. Átravs de alguma manipulação algébrica obtém-se as equações de Saint-Venant simplificadas:
\[
\frac{\partial Q}{\partial x} = 0
\] \hspace{1cm} (4.9)

\[
\frac{\partial h(x)}{\partial x} = \frac{S_0 - S_f(x)}{1 - F_r^2(x)}
\] \hspace{1cm} (4.10)

em que \(F_r \) é o número de Froude\(^2\), definido por:

\[
F_r^2 = \frac{Q^2}{g \cdot A \cdot \frac{\partial A}{\partial h}}
\] \hspace{1cm} (4.11)

É de salientar que de (4.3) se deduz que a derivada parcial anterior representa a largura da superfície da água.

Estas duas equações definem um regime de equilíbrio, correspondendo a um caudal constante ao longo do canal e uma altura descrita pela equação diferencial ordinária (4.10).

Uma solução particular do regime estacionário é obtida quando o nível da água é constante ao longo do canal. Neste caso o membro esquerdo da equação (4.10) é nulo, obtendo-se o regime uniforme:

\[
S_f(x) = S_0
\] \hspace{1cm} (4.12)

Esta última equação permite relacionar o caudal com o nível da água correspondente ao regime uniforme. No caso de escoamentos subcríticos, o regime uniforme estabelece qual o caudal máximo que se pode impor no canal, por forma a que no regime estacionário o nível da água não ultrapasse uma dada altura límite.

Na Fig. 4.4, representa-se o resultado de uma simulação\(^3\) do regime de equilíbrio para um canal de secção trapezoidal, com secção transversal idêntica à do canal experimental de Évora (ver Anexo 2). Tomou-se para comprimento do canal 1000 m, por forma a evidenciar o comportamento em regime estacionário. O caudal máximo é igual a 0.09 m\(^3\cdot\)s\(^{-1}\), idêntico ao caudal nominal do canal experimental de Évora.

![Figura 4.4: Representação dos níveis de água em regime estacionário, para diversos caudais.](image)

Notas: o nível da água \(h \) em regime estacionário é crescente com a posição \(x \). É de notar que no final do troço o canal comporta-se como um reservatório, sendo este comportamento mais pronunciado.

\(^2\)Ao longo deste relatório, quando não mencionado o contrário, assume-se que o escoamento é subcrítico, isto é, \(F_r < 1 \)

\(^3\)Implementou-se o método de Euler para a resolução numérica da EDO que caracteriza o regime estacionário
quanto menor for o caudal. Verifica-se também que, quanto maior a distância em relação ao fim do troço, mais próximo se encontra o nível da água da altura correspondente à solução uniforme para o caudal imposto.

4.2 Característica das comoratas

Para uma compara genérica, o caudal Q que a atravessa é função da altura da compara h_{comp} e dos níveis da água a montante h_{left} e a jusante desta h_{right}:

$$Q = f(h_{left}, h_{right}, h_{comp})$$ \hspace{1cm} (4.13)

Em comoratas do tipo *orifice* a água atravessa por baixo da compara, sendo a sua característica dada por:

$$Q = C_d A \sqrt{2g (h_{left} - h_{right})}$$ \hspace{1cm} (4.14)

em que $A(h_{comp})$ [m2] é a área eficaz da abertura da compara e C_d é o seu coeficiente de descarga.

![Diagrama de uma compara do tipo orifice](image.png)

Figura 4.5: Representação esquemática de uma compara do tipo *orifice*.

A relação anterior é válida enquanto se verificar a condição $h_{right} < \frac{2}{3} h_{left}$, que corresponde a um escoamento subcrítico. Quando a relação entre os níveis de água a montante e a jusante da compara se torna superior a este valor, o regime de escoamento torna-se supercrítico, e o caudal que atravessa a compara não depende do nível da água a jusante. Assim, a expressão (4.14) já não é válida, devendo ser substituída por:

$$Q = C_{df} A \sqrt{2g (h_{left} - h_{comp}/2)}$$ \hspace{1cm} (4.15)

Estas equações separadas não são suficientes, uma vez que a compara pode transitar de uma condição para a outra, sendo necessária uma transição contínua entre ambas as situações.

Outra situação a ser considerada é aquela em que a compara se encontra fora de água. Esta revela-se de menor interesse prático, devido a não ser frequente em canais reais. Uma solução possível seria resolver as equações de Saint-Venant utilizando como condições fronteira $Q(0, t) = Q_0(t)$ e $h(L, t) = h_L(t)$ (ver Secção 4.1.1). As comoratas teriam de ser modeladas em termos do caudal, nível da água a jusante e altura da compara, calculando-se a partir daqui o nível a montante. Este nível seria então utilizado como condição fronteira para o troço de canal a montante da compara. Desta forma, bastaria colocar como condição na compara a igualdade dos níveis a montante e a jusante ($h_{left} = h_{right}$) quando esta não se encontra mergulhada.

Nas comoratas *overshot* a água passa por cima da compara, sendo a equação que descreve o caudal em função das alturas da água e da compara a seguinte:
\[Q = B C_d \sqrt{2g} (h_{left} - h_{comp})^{3/2} \] \hspace{1cm} (4.16)

Figura 4.6: Representação esquemática de uma comporta do tipo overshoot.

As comportas são completamente caracterizadas pelo seu coeficiente de descarga, o qual pode ser estimado com recurso a dados experimentais.
Capítulo 5

Métodos Numéricos

Neste capítulo apresentam-se dois métodos numéricos para a resolução das equações de Saint-Venant.

5.1 Resolução numérica das equações

Para resolver as equações de Saint-Venant é necessária a utilização de métodos numéricos para resolução de EDPs, uma vez que estas equações não apresentam solução analítica para uma situação não-estacionária. Estes métodos baseiam-se na discretização espacial e temporal do domínio da solução, formando uma malha de pontos sobre os quais se pretende avaliar a função. Podem-se dividir em duas grandes classes: os métodos explícitos e os métodos implícitos. Nos primeiros, as variáveis no novo instante temporal são determinadas em cada ponto da malha por cálculos directos a partir das variáveis nos instantes passados (Fig. 5.1(a)). Os métodos implícitos apresentam uma maior complexidade, uma vez que as variáveis têm de ser calculadas simultaneamente no novo passo de tempo (Fig. 5.1(b)). Devido a cada variável depender não só das variáveis já conhecidas, mas também das variáveis que se pretendem determinar, torna-se necessária a resolução de um sistema de equações.

Implementaram-se dois esquemas numéricos distintos: o método de Preissmann (método implícito) e o método da colocação ortogonal (método explícito), descritos de seguida. Posteriormente, verifica-se a influência numérica de alguns parâmetros destes métodos sobre a solução das equações, e compararam-se ambos os esquemas de resolução.

Figura 5.1: Métodos de resolução de EDPs.
5.1.1 Método de Preissmann

O método de Preissmann (Preissmann, 1965) consiste na discretização espacial das variáveis hidráulicas em \(N \) pontos uniformemente espaçados, aproximando as derivadas por diferenças finitas em quatro pontos (Fig. 5.2).

![Figura 5.2: Malha do esquema de discretização de Preissmann.](image)

Neste método, uma função de \(t \) e \(x \) e as suas derivadas são estimadas da seguinte forma [6]:

\[
f(x,t) \simeq M f^n_j = \frac{\theta}{2} (f^n_{i+1} + f^n_i) + \frac{1-\theta}{2} (f^n_{i+1} + f^n_i) \tag{5.1}
\]

\[
\frac{\partial f}{\partial x} \simeq D_x f^n_j = \theta \frac{f^n_{i+1} - f^n_i}{\Delta x} + (1-\theta) \frac{f^n_{i} - f^n_{i-1}}{\Delta x} \tag{5.2}
\]

\[
\frac{\partial f}{\partial t} \simeq D_t f^n_j = \frac{f^n_{i+1} - f^n_i}{2 \Delta t} \tag{5.3}
\]

em que \(i \) é o índice espacial, \(n \) o índice temporal e \(\theta \) é uma constante de ponderação com valor compreendido entre 0 e 1. \(M \), \(D_x \) e \(D_t \) são operadores de diferenças finitas. A substituição das funções em (4.1) e (4.2) pelas aproximações dadas conduz a um sistema de \(2N - 2 \) equações implícitas:

\[
D_t A^n_i + D_x Q^n_i = 0, \quad i = 0, \ldots, N - 2 \tag{5.4}
\]

\[
D_t Q^n_i + D_x \left(\frac{Q^2}{A} \right)^n_i + g \cdot MA^n_i \cdot (D_x h^n_i + M(S_f)^n_i - S_0) = 0, \quad i = 0, \ldots, N - 2 \tag{5.5}
\]

Dadas as \(2N \) variáveis de estado no instante temporal \(n \) e duas condições fronteira relativas ao instante temporal \(n + 1 \), podem-se deduzir as restantes \(2N - 2 \) variáveis para este último instante de tempo, utilizando, por exemplo, o método de Newton (ver Anexo A).

Verifica-se que o método de Preissmann é divergente para valores de \(\theta \) menores que 0.5.
5.1.2 Método da colocação ortogonal

O método da colocação ortogonal \[7\] consiste na discretização espacial das variáveis em \(n\) pontos de colocação \(x_i\), com \(i = 0, \ldots, n-1\), aproximando as curvas de domínio espacial contínuo através de interpolação. Dado um conjunto de \(n\) funções de base linearmente independentes, \(N_j(x)\), \(j = 0, \ldots, n-1\), as aproximações para o nível da água e para o caudal são:

\[
h_a(x,t) = \sum_{j=0}^{n-1} h_j(t)N_j(x) \quad (5.6)
\]

\[
Q_a(x,t) = \sum_{j=0}^{n-1} Q_j(t)N_j(x) \quad (5.7)
\]

Por outras palavras, as aproximações para o nível da água \(h(x,t)\) e o caudal \(Q(x,t)\) ficam representadas por vetores de coordenadas, respectivamente, \(h_j(t)\) e \(Q_j(t)\), com \(j = 0, \ldots, n-1\). Designam-se estes vetores por \(h\) e \(Q\).

Substituindo as aproximações (5.6) e (5.7) nas equações de Saint-Venant, obtém-se dois resíduos, dados por:

\[
\frac{\partial A_a}{\partial t} + \frac{\partial Q_a}{\partial x} = R_1(x, h, \bar{Q}) \quad (5.8)
\]

\[
\frac{\partial Q_a}{\partial t} + \frac{\partial Q_a^2/A_a}{\partial x} + gA_a \frac{\partial h_a}{\partial x} + gA_a(S_{fa} - S_0) = R_2(x, \bar{h}, \bar{Q}) \quad (5.9)
\]

em que \(S_{fa}\) é obtido de forma análoga a \(S_f\), mas recorrendo às expressões aproximadas (5.6) e (5.7).

Considerando \(n\) pontos de colocação \(x_i\), dois dos quais se encontram nas extremidades do canal, as coordenadas são determinadas como soluções do seguinte conjunto de equações não lineares:

\[
R_1(x_i, h, \bar{Q}) = 0 \quad (5.10)
\]

\[
R_2(x_i, \bar{h}, \bar{Q}) = 0 \quad (5.11)
\]

Para pontos de colocação (à excepção da fronteira) optaram-se pelas raízes de polinómios de Legendre, que são definidos recursivamente para o intervalo normalizado \([-1, 1]\) através de:

\[
P_0(x) = 1 \\
P_1(x) = x \\
\vdots \\
P_n(x) = \frac{(2n-1)xP_{n-1}(x)}{n} - \frac{(n-1)P_{n-2}(x)}{n} \quad (5.12)
\]

Tomaram-se como funções de base as funções de interpolação de Lagrange, dadas por:

\[
N_j(x) = \prod_{i=0}^{n-1} \frac{x-x_j}{x_j-x_i} \quad (5.13)
\]

Uma propriedade interessante deste tipo de funções é que são não nulas num único ponto de colocação:
Figura 5.3: Representação de alguns polinómios de Legendre.

\[N_j(x_i) = \begin{cases} 1, & \text{se } i = j \\ 0, & \text{se } i \neq j \end{cases} \quad (5.14) \]

pelo que as coordenadas das soluções aproximadas coincidem com os valores físicos das variáveis nos pontos de colocação, sendo:

\[
\begin{align*}
 h_a(x_i, t) &= h_i(t) \\
 Q_a(x_i, t) &= Q_i(t)
\end{align*}
\quad (5.15)
\]

Dá origem que, nos pontos de colocação, as aproximações para a secção submersa \(A_a(x_i, t) \), o declive devido à fricção \(S_{fa}(x_i, t) \), a largura da superfície da água \(l_a(x_i, t) \) e a velocidade do escoamento \(V_a(x_i, t) \) são funções unicamente de uma coordenada, podendo-se representar:

\[
\begin{align*}
 A_i(t) &= A_a(x_i, t) = f_1(h_i(t)) \\
 S_{fi}(t) &= S_{fa}(x_i, t) = f_2(h_i(t), Q_i(t)) \\
 l_i(t) &= l_a(x_i, t) = f_3(h_i(t)) \\
 V_i(t) &= V_a(x_i, t) = f_4(h_i(t), Q_i(t))
\end{align*}
\quad (5.16)
\]

É de referir que estas variáveis no geral não apresentam uma decomposição simples como o nível da água e o caudal em (5.6) e (5.7), pois tratam-se de funções não lineares destas.

Demonstra-se, por manipulação algébrica, que (5.10) e (5.11) são equivalentes às seguintes equações diferenciais ordinárias (em que se omite a dependência temporal para simplificação da notação):

\[
\frac{dh_i}{dt} = -\frac{1}{l_i} \sum_{j=0}^{n-1} Q_j N'_j(x_i) \quad (5.17)
\]

\[
\frac{dQ_i}{dt} = -\frac{2Q_i}{A_i} \sum_{j=0}^{n-1} Q_j N'_j(x_i) + \frac{Q_i^2}{A_i^2} \cdot l_i \cdot \sum_{j=0}^{n-1} h_j N'_j(x_i) - gA_i \sum_{j=0}^{n-1} h_j N'_j(x_i) + gA_i(S_0 - S_{fi}) \quad (5.18)
\]

A dedução destas expressões encontra-se detalhada no Anexo B. A resolução numérica deste sistema de \(2n \) equações diferenciais ordinárias (não-lineares) pode ser obtida através de diversos esquemas numéricos\(^1\), recorrendo-se aos já implementados pelo \textit{Simulink}.

\(^1\)Por exemplo os métodos de Runge-Kutta, Bogacki-Shampine e Euler para passo temporal fixo, e os de Dormand-Prince, Bogacki-Shampine e Adams para passo temporal variável.
A escolha do passo temporal tem de ser feita tendo em conta a estabilidade do método numérico. O número de Courant-Friedrichs-Lewy (CFL) [3] relaciona o passo temporal com o passo espacial, e é utilizado para caracterizar métodos de resolução de EDPs que recorrem a esquemas de diferenças finitas. Este é dado por

\[Cr = \frac{\Delta t(V + c)}{\Delta x} < 1 \] (5.19)

em que \(V + c \) representa a velocidade da onda mais rápida. Por outras palavras, o número de CFL determina quantas células espaciais atravessa um elemento de fluido durante um passo temporal.

Para métodos explícitos, tal como a colocação ortogonal, este número impõe um limite superior no passo temporal, uma vez que este tem de ser suficientemente pequeno para permitir que a informação se propague ao longo da grelha espacial, normalmente inferior à unidade, não convergindo para a solução caso contrário. Para os métodos implícitos, como o método de Preissmann, a estabilidade não está condicionada pela condição CFL, mas sim pela natureza da solução [4].

5.1.3 Validação do método de Preissmann e da colocação ortogonal

Por forma a testar e comparar os algoritmos desenvolvidos, simula-se a resposta de um troço de canal a um impulso no caudal de entrada, mantendo o caudal de saída constante (Fig. 5.4).

![Figura 5.4: Condições fronteira utilizadas para a simulação.](image)

A geometria utilizada é idêntica às troços do canal de Évora (ver Anexo 2.1), tendo um comprimento igual a 35 metros e um coeficiente de Manning de 0.01. Utiliza-se como referência o método de Preissmann com 20 representantes espaciais, espaçamento temporal de 1 segundo e \(\theta = 0.65 \).

![Figura 5.5: Comparação dos métodos de resolução.](image)
Na Fig. 5.5 representam-se os resultados da simulação de comparação entre ambos os métodos. Apesar de os resultados serem muito semelhantes, na Fig. 5.5(b) pode-se observar que o método da colocação ortogonal apresenta uma oscilação de alta frequência, as quais podem ser atenuadas pela redução do passo temporal.

Os resultados da simulação da influência do número de pontos de discretização no método de Preissmann encontram-se na Fig. 5.6. Observa-se que quanto menor o número de pontos de discretização, maior é a frequência de oscilação dos níveis, o que comprova que maior é a velocidade das ondas.

![Gráfico de tempo x nível a jusante com diferentes valores de N](image1)

Figura 5.6: Resultados simulados para diferentes valores de \(N \).

Na Fig. 5.7 apresentam-se os resultados da simulação da influência do espaçamento temporal \(dt \). Observa-se que, para o método de Preissmann, o passo temporal tem pouca influência nos resultados obtidos, tendo no entanto de ser suficientemente pequeno de forma a amostrar a dinâmica das condições fronteiras. Para o método da colocação ortogonal, por outro lado, a estabilidade depende do passo temporal, uma vez que este tem de respeitar a condição CFL (ver seção 5.1.2). Para o valor \(dt = 10 \) o método encontra-se perto do limite da estabilidade.

![Gráfico de tempo x nível a jusante com diferentes valores de dt](image2)

Figura 5.7: Comparação da influência do passo temporal \(dt \) para os dois métodos.

Os resultados da simulação da influência do parâmetro \(\theta \) no método de Preissmann encontram-se representados na Fig. 5.8. Mais uma vez os resultados são globalmente semelhantes, podendo-se observar em detalhe na Fig. 5.8(b) que quanto maior o valor de \(\theta \), mais atenuadas são as ondas.

Para evidenciar esta influência, simulou-se para um troço de canal fechado a evolução do sistema, supondo caudal inicial nulo e nível da água constante (e como tal não horizontal) (Fig. 5.9). Observa-se que o aumento do parâmetro \(\theta \) se traduz num amortecimento mais rápido dos regimes transitórios. No ensaio anterior não é tão evidente esta influência devido aos regimes transitórios simulados serem relativamente lentos, tal como nos canais reais. Como tal a escolha do parâmetro \(\theta \) não desempenha qualquer importância na calibração do modelo, tendo-se feito igual a 0.65.
Figura 5.8: Resultados simulados para diferentes valores de θ.

Figura 5.9: Influência do parâmetro θ nos regimes transitórios.
Capítulo 6

Biblioteca SIMULINK

Neste capítulo descrevem-se os vários blocos desenvolvidos e a forma de utilização destes blocos para a representação de um determinado canal. Esta descrição é feita com base nos 4 blocos básicos que se mostram na figura 6.1 e que representam respectivamente:

- Um troço de canal modelado pelo método de Preissman;
- Um troço de canal modelado pelo método de colocação ortogonal;
- Uma comporta do tipo orifice gate;
- Uma comporta do tipo overshot.

6.1 Bloco Simulink do troço de canal

Um troço de canal é representado por um bloco Simulink que tem como entradas o caudal de entrada e o caudal de saída (condições fronteira do modelo), e como saídas as alturas da água a montante, a meio e a jusante do canal. No interior do bloco tem-se também acesso às alturas da água nos outros pontos do canal. Um menu permite a escolha dos vários parâmetros do canal, bem como as condições iniciais para o caudal e altura da água. Estas podem, opcionalmente, ser calculadas a partir do regime estacionário do canal, dado o caudal e o nível da água a jusante do troço (ver Secção 4.1.3). Pode-se ainda escolher se se quer ou não visualizar uma representação do canal.

6.2 Bloco Simulink das comportas

As comportas são representadas por um bloco Simulink que tem como entradas a altura da comporta e os níveis da água a montante e a jusante da mesma, e como saída o caudal que a atravessa. Um menu permite a escolha dos vários parâmetros da comporta. Pode-se ainda escolher se se quer ou não visualizar uma representação da comporta.

Figura 6.1: Blocos Simulink desenvolvidos.
6.3 Ligações entre blocos implementados

Para se fazer a simulação de um canal completo com vários troços e comportas, é necessária a utilização de vários blocos. Cada troço de canal será representado por um bloco de Simulink, bem como cada comporta. Assim, consegue-se uma estrutura modular flexível que permite representar qualquer canal com facilidade. A saída da altura da água de um bloco “canal” será ligada à entrada de um bloco “comporta”, cuja saída “caudal” será por sua vez ligada ao mesmo bloco “canal” e ao bloco “canal” seguinte. A entrada de um bloco “canal” pode, alternativamente, estar ligada a outra fonte de sinais. As tomadas de água são modeladas através da soma do caudal da tomada à saída do bloco “canal” ou da sua subtração da entrada do bloco “canal” (consoante se queira modelar uma tomada no início ou no final do troço). Na Fig. 6.2 vê-se um exemplo de ligações entre blocos. Este modelo representa dois troços de canal separados por uma comporta orifice. O primeiro troço tem a montante uma entrada de caudal constante, enquanto que o segundo troço tem a jusante uma comporta overshot. Existe ainda uma tomada de água a montante da comporta orifice:

![Diagrama de blocos](image_url)

Figura 6.2: Exemplo de ligações entre blocos Simulink

6.4 Implementação do simulador do canal de Évora

Para testar a arquitetura de simulação de canais desenvolvida, criou-se um modelo Simulink representativo do canal experimental existente na universidade de Évora (ver descrição detalhada no Anexo 2). Este modelo encontra-se representado na Fig. 6.3. O canal é caracterizado estruturalmente por quatro troços separados por comportas do tipo orifice, sendo terminado no último troço por uma comporta do tipo overshot. Existem tomadas de águas a montante de cada comporta, e a admissão de água é efetuada com recurso a uma válvula MONOVAR. É de realçar que tanto as comportas como a MONOVAR já possuem um controlador implementado, tendo-se estimado modelos simplificados para estes sistemas em malha fechada (ver Anexo 2).

O simulador é inicializado em condições estacionárias, sendo estas definidas pela posição inicial das comportas e pelo caudal inicial que atravessa o canal. O perfil da água ao longo do canal é então calculado para montante, começando-se por determinar o nível a montante da comporta overshot, recorrendo à expressão (4.16). Seguidamente obtém-se alternadamente os níveis de água ao longo de um troço, utilizando as equações que descrevem o regime estacionário de um troço (4.10) e (4.11), e os níveis de água a montante das comportas orifice, através da expressão (4.15).

Foi necessário proceder à calibração do modelo desenvolvido com base em resultados experimentais, de forma que este reproduza a realidade tão bem quanto possível. Este procedimento encontra-se detalhado no Capítulo 7.
Figura 6.3: Modelo Simulink representativo do canal de Évora.

As características geométricas do sistema podem ser consultadas nos dados técnicos, e encontram-se resumidas nas Tabelas 6.1, 6.2 e 6.3.
Tabela 6.1: Parâmetros geométricos dos troços de canal.

<table>
<thead>
<tr>
<th>Parâmetro</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comprimento do primeiro troço</td>
<td>35 m</td>
</tr>
<tr>
<td>Comprimento do segundo troço</td>
<td>35 m</td>
</tr>
<tr>
<td>Comprimento do terceiro troço</td>
<td>35 m</td>
</tr>
<tr>
<td>Comprimento do quarto troço</td>
<td>37 m</td>
</tr>
<tr>
<td>Largura do fundo</td>
<td>0.15 m</td>
</tr>
<tr>
<td>Decile longitudinal</td>
<td>1.5×10^{-3}</td>
</tr>
<tr>
<td>Decile das espaldas</td>
<td>0.15 m</td>
</tr>
</tbody>
</table>

Tabela 6.2: Parâmetros físicos das comportas orifice.

<table>
<thead>
<tr>
<th>Parâmetro</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Largura do fundo</td>
<td>0.49 m</td>
</tr>
<tr>
<td>Declive das espaldas</td>
<td>0 m</td>
</tr>
<tr>
<td>Velocidade máxima</td>
<td>3.8886mm/s</td>
</tr>
<tr>
<td>Abertura máxima</td>
<td>0.8 m</td>
</tr>
<tr>
<td>Abertura mínima</td>
<td>0 m</td>
</tr>
</tbody>
</table>

Tabela 6.3: Parâmetros físicos das comportas overshot.

<table>
<thead>
<tr>
<th>Parâmetro</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Largura</td>
<td>0.45 m</td>
</tr>
<tr>
<td>Velocidade máxima</td>
<td>3.8886mm/s</td>
</tr>
<tr>
<td>Abertura máxima</td>
<td>0.8 m</td>
</tr>
<tr>
<td>Abertura mínima</td>
<td>0 m</td>
</tr>
</tbody>
</table>
Capítulo 7

Validação do Modelo

Neste capítulo faz-se a validação do modelo do canal piloto descrito no capítulo 2, através da comparação dos resultados de simulação com os obtidos com dados experimentais. Nas descrições matemáticas do canal existem poucos parâmetros a determinar experimentalmente. Para os troços do canal é apenas necessário estimar o valor do coeficiente de Manning\(^1\), uma vez que os dados da sua geometria podem ser consultados. É ainda necessário obter as constantes de descarga das comportas, tanto para a comporta orifice\(^2\) como para a comporta overshot. Estes parâmetros demonstraram ser decisivos para o comportamento do modelo completo, tendo merecido especial atenção na sua calibração.

7.1 Influência dos parâmetros físicos a calibrar

Para exemplificar a influência dos parâmetros a calibrar nos resultados obtidos, efectuaram-se algumas simulações num canal constituído por dois troços separados por uma comporta do tipo orifice, e terminado por uma comporta do tipo overshot. O modelo utilizado para simulação é semelhante ao representado na Fig. 6.2, mas com uma tomada extra a montante da comporta overshot. Nota-se que a geometria dos troços foi considerada idêntica à do canal de Évora. Consideraram-se como condições nominais um coeficiente de manning igual a 0.01 e um coeficiente de descarga igual a 0.6 e 0.4 para as comportas do tipo orifice e overshot, respectivamente. Utilizou-se um passo temporal de 0.1 s e 10 representantes espaciais.

O ensaio simulado consistiu nas seguintes acções:

\[t = 0 \text{s}: \text{Início do teste em condições estacionárias, com um caudal de entrada de } 0.02 \text{m}^3\text{s}^{-1}, \text{e com as comportas orifice e overshot a uma altura de } 100 \text{mm e } 500 \text{mm respectivamente}; \]

\[t = 1000 \text{s}: \text{Aumento do caudal de entrada para } 0.04 \text{m}^3\text{s}^{-1}; \]

\[t = 2000 \text{s}: \text{Extracção de um caudal de } 0.02 \text{m}^3\text{s}^{-1} \text{ a montante da comporta intermédia}; \]

\[t = 3000 \text{s}: \text{Fim da extracção de um caudal de } 0.02 \text{m}^3\text{s}^{-1} \text{ a montante da comporta intermédia}; \]

\[t = 4000 \text{s}: \text{Abertura da comporta intermédia para uma altura de } 200 \text{mm}; \]

\[t = 5000 \text{s}: \text{Extracção de um caudal de } 0.02 \text{m}^3\text{s}^{-1} \text{ a montante da última comporta}; \]

\[t = 6000 \text{s}: \text{Fecho da última comporta para uma altura de } 700 \text{mm}; \]

\[t = 7000 \text{s}: \text{Fim da extracção de um caudal de } 0.02 \text{m}^3\text{s}^{-1} \text{ no final do canal}; \]

\[t = 8000 \text{s}: \text{Fim do ensaio.} \]

Nas figuras seguintes apresentam-se alguns níveis da água no canal, em função de cada coeficiente físico descrito. Os níveis M1 e M2 referem-se aos níveis a montante da primeira e segunda comportas, respectivamente\(^3\).

\(^{1}\)O coeficiente de manning assume-se como constante ao longo do canal.

\(^{2}\)A constante de descarga assume-se igual para as três comportas orifice, uma vez que apresentam a mesma geometria.

\(^{3}\)Utilizou-se uma notação semelhante à do canal experimental de Évora (ver Anexo 2).
Figura 7.1: Resultados simulados para diferentes valores da constante de descarga da comporta intermédia.

Observa-se que a influência da variação da constante de descarga da comporta intermédia (Fig. 7.1) afecta sobretudo o troço de canal a montante. No segundo troço não se verifica qualquer dependência no regime estacionário, já que este é definido apenas pelos elementos hidráulicos a jusante de um dado ponto. Quanto ao comportamento transitório neste troço, a influência desta variável é principalmente sentida quando se actua sobre a primeira comporta (diferença máxima entre curvas de 2 cm), sobre a primeira tomada (diferença máxima de 1.5 cm) ou sobre a admissão de água (diferença máxima de 1 cm), ou seja, por elementos a montante da comporta orifice. É de notar que o comportamento do nível M2 se repete ao longo de todo o troço. Relativamente ao troço a montante, tanto o regime transitório como o forçado são alterados, pois a constante de descarga limita a quantidade de água que atravessa a comporta. Quanto maior for a constante de descarga, maior é o caudal que atravessa a comporta para o mesmo desnível, ou equivalente, menor é o desnível para o mesmo caudal. Obtém-se assim regimes transitórios mais rápidos e menor variações de amplitude entre regimes estacionários.

Figura 7.2: Resultados simulados para diferentes valores da constante de descarga da última comporta.

Como se verifica na Fig. 7.2, a constante de descarga da comporta overshot desempenha um papel semelhante à da comporta orifice no troço a montante. Diminuindo esta, observa-se que os níveis da água em todos os troços aumentam, bem como a duração dos regimes transitórios.

Na Fig. 7.3 representam-se os níveis a montante e a jusante do último troço, ilustrando a influência do coeficiente de Manning. Nota-se que o comportamento do nível a jusante do troço não é alterado significativamente pela mudança desta variável (para a gama de valores simulados, as curvas diferem no máximo 3 cm entre si). Quanto maior for este parâmetro, maior serão os atritos existentes ao longo do troço de canal, e consequentemente maior será o nível a montante deste. Este facto demonstra-se facilmente para o regime estacionário a partir de (4.10).
Figura 7.3: Resultados simulados para diferentes valores do coeficiente de Manning.

7.2 Resultados obtidos

Para determinar os parâmetros mais adequados que caracterizam o canal experimental de Évora, recolheram-se dados experimentais do sistema em malha aberta. Posteriormente, efectuou-se uma minimização do erro quadrático médio entre estes dados e os valores de simulação, utilizando métodos numéricos de optimização. As variáveis livres na minimização foram o coeficiente de Manning, a constante de descarga da comporta orifice (considerada igual para as várias comportas) e a constante de descarga da comporta overshoot. As considerações anteriores sobre a influência destes parâmetros na resposta de um canal genérico sugerem que a estimativa deve ser efectuada passo a passo, de jussante para montante, começando pela calibração da constante de descarga da comporta overshoot e seguindo para as restantes.

Observou-se que os dados experimentais recolhidos estavam afectados de um offset devido à má calibração dos sensores que medem o nível da água. Por esta razão, incorporou-se também a estimativa dos offsets no problema de optimização.

Os parâmetros que conduziram ao melhor ajuste dos dados simulados e experimentais encontram-se na Tab. 7.1. É de notar que a área efectiva da abertura da comporta orifice foi considerada trapezoidal (apesar do seu formato rectangular), uma vez que o troço de canal que lhe segue tem esse perfil. Esta opção levou à obtenção de melhores resultados.

Tabela 7.1: Parâmetros estimados para o canal de Évora.

<table>
<thead>
<tr>
<th>Parâmetro</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coeficiente de Manning</td>
<td>0.0175 m$^{-1/3}$s</td>
</tr>
<tr>
<td>Coeficiente de descarga das comportas orifice</td>
<td>0.8828</td>
</tr>
<tr>
<td>Coeficiente de descarga da comporta overshoot</td>
<td>0.3604</td>
</tr>
</tbody>
</table>

Nas figuras seguintes compararam-se os níveis experimentais com os níveis obtidos pelo simulador, para um dos ensaios experimentais realizados (ver Anexo ??). Parte das diferenças observadas residem no facto do modelo Simulink não representar muito fielmente a geometria do canal, nomeadamente a parte do canal a montante das comportas, que tem uma geometria radicalmente diferente da modelada (ver Anexo 2). Outra fonte de erro é a incerteza na medida dos caudais de admissão e extração de água.

Alternativamente à calibração do simulador através de um problema de optimização, poder-se-ia calibrá-lo através da recolha de dados do sistema em regime estacionário. As constantes de descarga são facilmente estimadas invertendo as (4.14) e (4.16), e o coeficiente de Manning pode ser obtido com recurso às equações que descrevem o regime estacionário de um troço de canal, (4.10) e (4.11). Este método tem o inconveniente destes parâmetros serem muito sensíveis aos valores dos níveis, e como tal para se obter uma calibração correcta é necessária a obtenção de dados muito exactos. Não se praticou esta abordagem, pois a maioria dos sensores exigiria a recolha manual dos níveis, vindo estes afectados de alguma

4Uma vez que os níveis são muito semelhantes ao longo do canal, a sua diferença é mal condicionada numericamente, e consequentemente também será a estimativa dos parâmetros.
Figura 7.4: Comparação entre o nível M1 experimental e simulado.

Figura 7.5: Comparação entre o nível J2 experimental e simulado.

Figura 7.6: Comparação entre o nível J3 experimental e simulado.

incerteza (a menor graduação das régua é 1cm, sendo os desníveis 5cm).
Apêndice A

Método de Newton Aplicado ao Método de Preissmann

Considera-se a malha de Preissmann, ilustrada na Fig. 5.2, e assume-se que o troço de canal está discretizado espacialmente em N pontos, espaçados uniformemente de Δx. Assim, o estado do canal num dado instante de tempo n, é descrito por um conjunto de 2N variáveis hidráulicas, \(h_i^n \) e \(Q_i^n \), com \(i = 0, \ldots, N - 1 \).

Substituindo nas equações de Saint-Venant os operadores de diferenças finitas dados por:

\[
f(x,t) \simeq M f^n_i = \frac{\theta}{2} (f_{i+1}^{n+1} + f_i^{n+1}) + \frac{1-\theta}{2} (f_{i+1}^n + f_i^n) \quad \text{(A.1)}
\]

\[
\frac{\partial f}{\partial x} \simeq D_x f_j^n = \theta \frac{f_{j+1}^{n+1} - f_j^{n+1}}{\Delta x} + (1-\theta) \frac{f_{j+1}^n - f_j^n}{\Delta x} \quad \text{(A.2)}
\]

\[
\frac{\partial f}{\partial t} \simeq D_t f_j^n = \frac{f_{j+1}^{n+1} - f_j^{n+1} + f_j^{n+1} - f_j^n}{2\Delta t} \quad \text{(A.3)}
\]

obtém-se um sistema de 2N – 2 equações\(^1\) que relaciona, implicitamente, o estado do canal nos instantes de tempo \(n \) e \(n + 1 \). Fica-se assim com:

\[
D_t A_i^n + D_x Q_i^n = 0, \quad i = 0, \ldots, N - 2 \quad \text{(A.4)}
\]

\[
D_t Q_i^n + D_x \left(\frac{Q^2}{A} \right)_i^n + g \cdot MA_i^n \cdot (D_x h_i^n + M(Sf)_i^n - S_0) = 0, \quad i = 0, \ldots, N - 2 \quad \text{(A.5)}
\]

Dadas as 2N variáveis de estado no instante temporal \(n \) e duas condições fronteira relativas ao instante temporal \(n + 1 \), podem-se deduzir as restantes \(2N - 2 \) variáveis para este último instante de tempo. Consideram-se como condições fronteira os caudais nas extremidades do canal, sendo então conhecidas as variáveis \(Q_0^{n+1} \) e \(Q_N^{n+1} \).

Devido à complexidade do sistema não-linear, não é possível obter uma solução analítica do mesmo, formulando-se o problema no âmbito dos métodos numéricos. Recorre-se ao método de Newton para localização de zeros de funções vectoriais, que de seguida se descreve sucintamente.

Seja \(f : R^n \rightarrow R^n \) uma função cujos zeros se pretendem estimar, e \(x \in R^n \) o vector que contém a sua estimativa. A iteração do método de Newton é descrita por\(^2\):

\[^1\]\(N - 1\) equações da conservação de massa e \(N - 1 \) equações de conservação do momento.
\[^2\]Nota-se que não se apresenta a parcela correspondente às perdas.
\[^3\]Alternativamente a este cálculo, cuja complexidade é cúbica em \(m \), pois necessita da inversão e de uma matriz, formula-se um problema equivalente da resolução de um sistema linear, cuja complexidade é quádrática em \(m \).
\[x^{i+1} = x^i - (J_f^T)^{-1} (x^i) \cdot f(x^i) \]

em que \(J_f \) é a matriz Jacobiana da função \(f \).

Neste caso particular pretendem-se localizar os zeros comuns das funções de Saint-Venant discretizadas, dadas por:

\[m_i = D_i A_i^n + D_x Q_i^n \]

\[d_i = D_i Q_i^n + D_x \left(\frac{Q_i^n}{A} \right)^n + g \cdot M A_i^n \cdot (D_x h_i^n + M(S_f))^n - S_0 \]

Agrupando este conjunto de funções num vector, obtém-se a função \(f : \mathbb{R}^{2N-2} \rightarrow \mathbb{R}^{2N-2} \):

\[
f = \begin{bmatrix}
 m_0 \\
 \vdots \\
 m_{N-2} \\
 d_0 \\
 \vdots \\
 d_{N-2}
\end{bmatrix}
\]

\[x = \begin{bmatrix}
 h_0^{n+1} \\
 \vdots \\
 h_{N-1}^{n+1} \\
 Q_1^{n+1} \\
 \vdots \\
 Q_{N-2}^{n+1}
\end{bmatrix}
\]

A matriz Jacobiana da função \(f \) será dada por:

\[
J_f = \begin{bmatrix}
 \frac{\partial m_0}{\partial h_0} & \cdots & \frac{\partial m_0}{\partial h_{N-1}} & \frac{\partial m_0}{\partial Q_1} & \cdots & \frac{\partial m_0}{\partial Q_{N-2}} \\
 \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
 \frac{\partial m_{N-2}}{\partial h_0} & \cdots & \frac{\partial m_{N-2}}{\partial h_{N-1}} & \frac{\partial m_{N-2}}{\partial Q_1} & \cdots & \frac{\partial m_{N-2}}{\partial Q_{N-2}} \\
 \frac{\partial d_0}{\partial h_0} & \cdots & \frac{\partial d_0}{\partial h_{N-1}} & \frac{\partial d_0}{\partial Q_1} & \cdots & \frac{\partial d_0}{\partial Q_{N-2}} \\
 \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
 \frac{\partial d_{N-2}}{\partial h_0} & \cdots & \frac{\partial d_{N-2}}{\partial h_{N-1}} & \frac{\partial d_{N-2}}{\partial Q_1} & \cdots & \frac{\partial d_{N-2}}{\partial Q_{N-2}}
\end{bmatrix}
\]

Uma vez que os operadores de diferenças finitas apenas dependem dos estados vizinhos, então para um dado \(i \), as funções \(m_i \) e \(d_i \) dependem apenas das variáveis associadas às posições \(i \) e \(i+1 \). A matriz Jacobiana é por esta razão esparsa, assumindo a forma:
De seguida formula-se o problema em termos de uma secção transversal trapezoidal, com largura inferior \(B \) e declive das espaldas \(S_l \). Têm-se as relações seguintes entre as variáveis:

\[
A_i = h_i \cdot (B + h_i S_l)
\]
\[
\frac{\partial A_i}{\partial h_i} = B + 2S_l h_i
\]

As derivadas das equações da conservação da massa \(m_i \) são:

\[
\frac{\partial m_i}{\partial h_i} = \frac{1}{2\Delta t} \frac{\partial A_i}{\partial h_i}
\]
\[
\frac{\partial m_i}{\partial h_{i+1}} = \frac{1}{2\Delta t} \frac{\partial A_{i+1}}{\partial h_{i+1}}
\]

\[
\frac{\partial m_i}{\partial Q_i} = -\frac{\theta}{\Delta x}
\]
\[
\frac{\partial m_i}{\partial Q_{i+1}} = \frac{\theta}{\Delta x}
\]

Para determinar as derivadas das equações da conservação do momento, começa-se por explicitar algumas derivadas relativas ao declive de fricção:

\[
(S_f)_i = \frac{Q_i |Q_i| n^2}{A_i^2 R_i^{4/3}}
\]

\[
\frac{\partial R_i}{\partial h_i} = \frac{1}{P_i} \frac{\partial A_i}{\partial h_i} - \frac{A_i \partial P_i}{P_i^2 \partial h_i}
\]
\[
\frac{\partial P_i}{\partial h_i} = 2\sqrt{1 + S_i^2}
\] (A.21)

\[
\frac{\partial (S_f)_i}{\partial h_i} = -\frac{2|Q_i|n^2 \partial A_i}{A_i^{3} R_i^{4/3}} - \frac{4|Q_i|n^2 \partial R_i}{3A_i^{2} R_i^{4/3}}
\] (A.22)

\[
\frac{\partial (S_f)_i}{\partial Q_i} = \frac{2|Q_i|n^2}{A_i^{2} R_i^{4/3}}
\] (A.23)

E logo as derivadas das equações de conservação do momento são:

\[
\frac{\partial d_i}{\partial h_i} = \frac{\theta}{\Delta x} \frac{Q_i^2 \partial A_i}{A_i^{2}} + \frac{\theta}{2} \frac{\partial A_i}{\partial h_i} (D_x h_i^n + M(S_f)_i^n - S_0) +
\]

\[
+ gMA_i^n \left(\frac{\theta}{\Delta x} + \frac{\theta \partial (S_f)_i}{2 \partial h_i} \right)
\] (A.24)

\[
\frac{\partial d_i}{\partial h_{i+1}} = -\frac{\theta}{\Delta x} \frac{Q_{i+1}^2 \partial A_{i+1}}{A_{i+1}^{2}} + \frac{\theta}{2} \frac{\partial A_{i+1}}{\partial h_{i+1}} (D_x h_{i+1}^n + M(S_f)_{i+1}^n - S_0) +
\]

\[
+ gMA_i^n \left(\frac{\theta}{\Delta x} + \frac{\theta \partial (S_f)_{i+1}}{2 \partial h_{i+1}} \right)
\] (A.25)

\[
\frac{\partial d_i}{\partial Q_i} = \frac{1}{2\Delta t} - \frac{2\theta}{\Delta x} \frac{Q_i}{A_i} + gMA_i^n \frac{\theta \partial (S_f)_i}{2 \partial h_i}
\] (A.26)

\[
\frac{\partial d_i}{\partial Q_{i+1}} = \frac{1}{2\Delta t} + \frac{2\theta}{\Delta x} \frac{Q_{i+1}}{A_{i+1}} + gMA_i^n \frac{\theta \partial (S_f)_{i+1}}{2 \partial h_{i+1}}
\] (A.27)
Apêndice B

Sistema de EDOs para a colocação ortogonal

Considerando as aproximações (5.6) e (5.7) obtém-se as derivadas parciais:

\[
\frac{\partial h_a}{\partial t}(x, t) = \frac{\partial}{\partial t} \left(\sum_{j=0}^{n-1} h_j(t) N_j(x) \right) = \sum_{j=0}^{n-1} h_j'(t) N_j(x) \quad (B.1)
\]

\[
\frac{\partial h_a}{\partial x}(x, t) = \frac{\partial}{\partial x} \left(\sum_{j=0}^{n-1} h_j(t) N_j(x) \right) = \sum_{j=0}^{n-1} h_j(t) N'_j(x) \quad (B.2)
\]

\[
\frac{\partial Q_a}{\partial t}(x, t) = \frac{\partial}{\partial t} \left(\sum_{j=0}^{n-1} Q_j(t) N_j(x) \right) = \sum_{j=0}^{n-1} Q_j(t) N'_j(x) \quad (B.3)
\]

\[
\frac{\partial Q_a}{\partial x}(x, t) = \frac{\partial}{\partial x} \left(\sum_{j=0}^{n-1} Q_j(t) N_j(x) \right) = \sum_{j=0}^{n-1} Q_j(t) N'_j(x) \quad (B.4)
\]

Utilizando como funções de base as funções de interpolação de Lagrange (5.13), ao avaliar as derivadas parciais e as funções nos pontos de colocação, e devido à propriedade (5.14), obtém-se:

\[
\frac{\partial h_a}{\partial t}(x_i, t) = \sum_{j=0}^{n-1} h_j'(t) N_j(x_i) = h'_i(t) \quad (B.5)
\]

\[
\frac{\partial h_a}{\partial x}(x_i, t) = \sum_{j=0}^{n-1} h_j(t) N'_j(x_i) \quad (B.6)
\]

\[
\frac{\partial Q_a}{\partial t}(x_i, t) = \sum_{j=0}^{n-1} Q_j(t) N_j(x_i) = Q'_i(t) \quad (B.7)
\]

\[
\frac{\partial Q_a}{\partial x}(x_i, t) = \sum_{j=0}^{n-1} Q_j(t) N'_j(x_i) \quad (B.8)
\]

Notas-se que a propriedade expressa em (5.14) não é aplicável às derivadas das funções de base Lagrangianas, pelo que não é possível simplificar as derivadas parciais de \(h_a \) e \(Q_a \) em ordem a \(x \).
Como, nos pontos de colocação, as variáveis hidráulicas são funções unicamente das coordenadas respeitantes ao mesmo ponto, (5.16), então vem que:

$$\frac{\partial A_a}{\partial t}(x_i, t) = \frac{dA_a}{dt}(x_i, t) = \frac{dA_a}{dh}(x_i, t) = \frac{dh_i(t)}{dt} = l_i(t) \cdot h'_i(t)$$ \hspace{1cm} (B.9)

Obtêm-se assim de (5.10) as EDOs para o cálculo das derivadas temporais das coordenadas do nível da água:

$$\frac{\partial A_a}{\partial t}(x_i, t) + \frac{\partial Q_a}{\partial x}(x_i, t) = 0 \Leftrightarrow \frac{dA_a}{dt}(x_i, t) + \sum_{j=0}^{n-1} Q_j(t)N'_j(x_i) = 0$$

$$\Leftrightarrow l_i(t) \cdot h'_i(t) + \sum_{j=0}^{n-1} Q_j(t)N'_j(x_i) = 0 \hspace{1cm} (B.10)$$

$$\Leftrightarrow h'_i(t) = - \frac{1}{l_i(t)} \sum_{j=0}^{n-1} Q_j(t)N'_j(x_i)$$

Relativamente ao desenvolvimento de (5.11), começa-se por notar que:

$$\frac{\partial A_a}{\partial x}(x_i, t) = \frac{\partial A_a}{\partial x}(x_i, t) \cdot \frac{\partial h_a}{\partial x}(x_i, t) = l_i(t) \cdot \sum_{j=0}^{n-1} h_j(t)N'_j(x_i)$$ \hspace{1cm} (B.11)

Aplicando a regra da derivada do produto e da composição, é possível desenvolver um dos termos da equação de Saint-Venant da conservação do momento, vindo:

$$\frac{\partial Q_a}{\partial x}(x_i, t) = \frac{\partial Q_a}{\partial A_a} \cdot \frac{\partial A_a}{\partial x}(x_i, t) = \frac{\partial Q_a}{\partial A_a} \cdot \frac{\partial A_a}{\partial x}(x_i, t)$$

$$\Rightarrow 2 \frac{Q_a(x_i, t)}{A_a(x_i, t)} \frac{\partial Q_a}{\partial x}(x_i, t) - \frac{Q_a(x_i, t)}{A_a(x_i, t)} \frac{\partial A_a}{\partial x}(x_i, t)$$

$$= 2 \frac{Q_i(t)}{A_i(t)} \sum_{j=0}^{n-1} Q_j(t)N'_j(x_i) - \frac{Q_i(t)}{A_i(t)} \cdot l_i(t) \cdot \sum_{j=0}^{n-1} h_j(t)N'_j(x_i) \hspace{1cm} (B.12)$$

Finalmente, recorrendo a (5.11), retiram-se as EDOs para o cálculo das derivadas temporais das coordenadas do caudal:

$$\Rightarrow \frac{\partial Q_a}{\partial t}(x_i, t) + \frac{\partial Q_a^2}{\partial x}(x_i, t) + gA_a(x_i, t) \frac{\partial h_a}{\partial x}(x_i, t) + gA_a(x_i, t)(S_{fu}(x_i, t) - S_0) = 0$$

$$\Rightarrow Q_i'(t) + 2 \frac{Q_i(t)}{A_i(t)} \sum_{j=0}^{n-1} Q_j(t)N'_j(x_i) - \frac{Q_i(t)}{A_i(t)} \cdot l_i(t) \cdot \sum_{j=0}^{n-1} h_j(t)N'_j(x_i)$$

$$+ gA_i(t) \sum_{j=0}^{n-1} h_j(t)N'_j(x_i) + gA_i(t)(S_{fu}(t) - S_0) = 0 \hspace{1cm} (B.13)$$

$$\Rightarrow Q_i'(t) = -2 \frac{Q_i(t)}{A_i(t)} \sum_{j=0}^{n-1} Q_j(t)N'_j(x_i) + \frac{Q_i(t)}{A_i(t)} \cdot l_i(t) \cdot \sum_{j=0}^{n-1} h_j(t)N'_j(x_i)$$

$$- gA_i(t) \sum_{j=0}^{n-1} h_j(t)N'_j(x_i) + gA_i(t)(S_0 - S_{fu}(t))$$
Uma implementação eficiente do algoritmo para o cálculo das derivadas temporais das coordenadas \(h_i \) e \(Q_i \), que representam o estado do canal, consiste em começar por obter as derivadas parciais em ordem a \(x \) das variáveis hidráulicas, através de (B.6) e (B.8), e seguidamente calcular o pretendido com as relações (B.10) e (B.13).

Note-se que o cálculo das derivadas das funções de base nos pontos de colocação, \(N'_i(x_i) \), só necessita de ser executado uma vez, o que reduz o peso computacional do algoritmo. A complexidade do cálculo das derivadas parciais em ordem a \(t \in O(n^2) \), uma vez que se tratam de 2n derivadas distintas, e a obtenção de cada uma envolve uma soma de \(n \) elementos.
Referências

[10] The Engineering Tool Box

[12] Método de optimização de Davidson-Fletcher-Powell,
 http://www.ii.uam.es/~fdiez/docencia/05-06/doctorado/material/DFP.html