Refereed digital publication to support online communities

Frederico Figueiredo* and Joaquim Jorge
INESC-ID,
Rua Alves Redol, n 9, 1000 Lisbon, Portugal
E-mail: frederico.figueiredo@inesc-id.pt
E-mail: jorgej@acm.org
*Corresponding author

Frank Hanisch
WSI/GRIS University of Tübingen,
Sand 14, 72076, Tübingen, Germany
E-mail: fhanisch@wsi-gris.uni-tuebingen.de

Colleen Case
Schoolcraft College, Livonia Campus,
18600 Haggerty Rd., Livonia, Michigan, USA
E-mail: ccase@schoolcraft.edu

Abstract: In this article, we examine how the international computer graphics (CG) community can be empowered by disseminating and recognising peer-reviewed educational work. Over the past years, we have developed a technical platform to support these activities. However, to move forward, we need to gather and rally the online community around it. Indeed, we require providing the social scaffolding for personal involvement and ownership to enhance the growth of the community tool. To this end, we conducted a survey in late 2005, the results of which are presented here, and we discuss the actions derived and directions entailed by our latest findings. Apart from removing barriers to participation, we concentrate our efforts on adding peer-recognition through member profiles (‘who’s who in CG education’) and on disseminating the different, community-borne, views on CG curricula.

Keywords: online communities; virtual communities; web-based applications; refereed digital publication; educational resources; computer graphics; CG.

Reference to this paper should be made as follows: Figueiredo, F., Jorge, J., Hanisch, F. and Case, C. (xxxx) ‘Refereed digital publication to support online communities’, Int. J. Web Based Communities, Vol. X, No. Y, pp.000–000.

Biographical notes: Frederico Figueiredo is a User Experience Manager at Nokia Siemens Networks. He received his MSc in Intelligent Systems and Multimedia in 2007, at Instituto Superior Técnico, where he also graduated in Information Systems and Computer Engineering in 2003. He works as a Researcher at INESC-ID, since 2002, in the Visualisation and Intelligent Multimodal Interfaces Group. Since 2006, he is a member of the SIGGRAPH Education Committee where he coordinates the cgSource project. His main areas of research include usability engineering and online communities.
Joaquim Jorge is a Professor of Computer Graphics and Multimedia at the Department of Computer Science and Engineering, of the Technical University of Lisbon, and coordinates the Visualisation and Intelligent Multimodal Interfaces Group at INESC-ID in Lisbon, Portugal. He is a Senior Member of both IEEE and ACM/SIGGRAPH, and serves on the Education Boards of SIGGRAPH and Eurographics.

Frank Hanisch is a Lecturer at the Graphical-Interactive Systems Lab, University of Tuebingen, Germany. He has ten-year experiences with developing interactive learning technologies as a Senior Researcher at the same institution. He was also a Guest Lecturer at Reutlingen University and University of Bonn. Currently, he holds the Elite scholarship of the Landesstiftung State of Baden-Württemberg. Since 2007, he is Co-chair of the Curricular and Instructional Resources, a working group of the SIGGRAPH Education Committee. His research interests include e-learning, interaction design, group work, adaptive systems, and cultural heritage.

Colleen Case is a Professor in the Computer Graphics Technology programme at Schoolcraft College. She teaches courses in digital imaging, graphic design, web design, electronic portfolio development and experiments in business alliance project classes. In addition, she is a freelance Technical Editor for educational textbook publishers, has had leadership roles with ACM/SIGGRAPH, and was recently a Fulbright Scholar to China.

1 Introduction

The Computer Graphics Educational Materials Source (CGEMS) (http://cgems.inesc-id.pt) embodies the long-anticipated idea of a worldwide refereed material repository (Cunningham, 2000), to collect and share educational assets in computer graphics (CG) and related domains. Built by and for the CG educational community, we presented the technical platform with peer-reviewing and publishing workflows in 2004 (Figueiredo et al., 2004a). Yet, building an online community platform will not automatically build a self-supported community (Maher and Pathak, 2006). As a community designer, it is important to realise what is of value to the community. Successful communities, in general, have the ability to allow members to create persistent identities, to communicate and interact with others around meaningful topics and to share in the creation of the content for the community. Communities are developed over time and evolve as people join or leave the community (Preece, 2000; Barak et al., 2008; Erikson, 2008).

The next step is to gather the community and raise awareness for CGEMS as a valuable instrument for publishing teaching material, shaping academic identity by getting peer-recognition for curricular innovations, and improving educational work.

Although some believe, a community can be built and be self-supported, when the software is ready to go online (Kalaitzakis et al., 2003), recent studies have shown that building and maintaining an active online community requires, above all, a shared purpose. Unity of purpose is what drives people to connect, provide valuable information and to come back, and not be regarded just as non-contributors (Abras et al., 2003). Groups and individuals mainly cooperate to share resources and satisfy each other’s needs (Preece, 2000). Socialise, work together, share ideas, and engage in topical conversations are the main reasons why people join online virtual communities.
Boetcher et al. (2004) identified the requirements for building virtual communities. Currently, we have defined the target audience (CG educators as contributors, and educators, researchers, students, and CG professionals as end users), provided the core tools and host, and built the system. Now, it is time to draw in the CG educational community and nurture CGEMS.

In the last years, many community members have expressed their anticipation for such a material repository and have wanted to volunteer as a CGEMS contributor or reviewer, yet in mid-2005, only a few teaching materials have been submitted. Undeniably, something else is missing, something that can foster and bring more people together, besides providing a peer-reviewing mechanism. We believe the right answer to be between the user interface and the tools that support the community. To understand exactly why few people are participating, and assure that we are providing the supporting tools that the community needs, we developed and distributed a survey.

The survey was available online, in late 2005, containing a total of 19 questions. Forty-four (44) participants answered our call. This paper shows and discusses the results obtained, presents a set of proposals, and shows the latest findings on how to improve the CG online community.

2 Community survey

When we analysed the state-of-the-art in digital libraries (Figueiredo et al., 2004b), we understood that many libraries offer other tools to get people to engage, to participate, and to enhance the feeling of belonging to the community. Tools such as user comments and ratings are among the most commonly used. Forums, chat spaces, and blogs with comments are additional online community tools. In addition to the need to improve the user interface, we needed to understand what other means were required to get people to participate. For this purpose, we developed an online survey to evaluate CGEMS and to prioritise future work, according to (Kitchenham and Pfleeger, 2001).

Based on our previous studies, we designed a survey and asked some colleagues to review and comment on it. Initially, the survey was filled out by several colleagues and we asked for feedback, regarding the clarity of the questions and the time required to complete the survey. After several revisions, we sent the survey to the CGEMS mailing list, which contains over 400 subscribers and added a link to survey to the CGEMS main pages. The purpose of the survey, as described in the next section, was three-fold. First, we wanted to assess more effective ways of involving the community in CGEMS. Second, we wanted to learn more about perceived barriers to participation. Lastly, we wanted to understand what community building tools could be most effective, if adopted, in adding perceived value to the community.

The survey was available online for two months beginning on 9 September 2005. It had 19 questions, listed in Table 1, organised in three sections: Generic information (eight questions); about CGEMS (three questions); and community building (seven questions plus one open-ended comment). The questions were mainly composed of single and multiple choice; some with a four-point Likert scale. Figure 1 shows the distribution of the 44 replies from all over the world. Although, only 11% of the total subscriber list responded to our request, we have obtained answers from a representative sample of the CGEMS audience.
Table 1 List of questions contained in the community building survey

<table>
<thead>
<tr>
<th>Number</th>
<th>Question</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Age</td>
</tr>
<tr>
<td>2</td>
<td>Gender</td>
</tr>
<tr>
<td>3</td>
<td>Education level</td>
</tr>
<tr>
<td>4</td>
<td>Job title</td>
</tr>
<tr>
<td>5</td>
<td>Indicate your main area of study/research/interest</td>
</tr>
<tr>
<td>6</td>
<td>In the last six months, how often do you usually use a personal computer (PC)?</td>
</tr>
<tr>
<td>7</td>
<td>Chose the operating system(s) you usually work with</td>
</tr>
<tr>
<td>8</td>
<td>Select the internet browser(s) you commonly use to surf the web/internet</td>
</tr>
<tr>
<td>9</td>
<td>How did you learn about CGEMS?</td>
</tr>
<tr>
<td>10</td>
<td>Select the item(s) that best describe your role with CGEMS</td>
</tr>
<tr>
<td>11</td>
<td>What do you think is the greatest barrier to materials submission in CGEMS? (see Figure 2 for details)</td>
</tr>
<tr>
<td>12</td>
<td>Please let us know which improvements would be most valuable to you, using a 4-point scale: (1 = not at all valuable, 2 = maybe valuable, 3 = valuable, 4 = very valuable) (see Figure 3 for details)</td>
</tr>
<tr>
<td>13</td>
<td>Should users’ comments, discussions, or ratings be moderated before posting?</td>
</tr>
<tr>
<td>14</td>
<td>If you chose ‘Yes’ in the previous question, who would have moderation responsibility?</td>
</tr>
<tr>
<td>15</td>
<td>Do you think CGEMS contents should be available or listed via other well-known digital libraries (such as ACM or Eurographics Digital Libraries)?</td>
</tr>
<tr>
<td>16</td>
<td>Did you ever review submissions to scientific conferences, workshops, or journals?</td>
</tr>
<tr>
<td>17</td>
<td>Did you ever visit the CGEMS website?</td>
</tr>
<tr>
<td>18</td>
<td>If you chose ‘Yes’ in the previous question, do you think contents are well presented and organised?</td>
</tr>
<tr>
<td>19</td>
<td>If you have any comment that will help us improving CGEMS usability/design, please be free to use the following text area.</td>
</tr>
</tbody>
</table>

Figure 1 Country distribution from the community survey (see online version for colours)
From the 44 participants, 89% were male and 11% were female, with ages ranging from 21 to over 51. 86% were over 31 years old (48% older than 41). Education background covered all levels, from high school (2%), college graduate (16%), MSc graduate (16%), to PhD graduate (66%). Their profession was also diversified: undergraduate student (2%), MSc student (5%), PhD student (5%), researcher (14%), teacher/professor (61%), and 14% to other professions, such as lecturer, software engineer, among others. The areas of study/interest also included a diverse set of answers, although all within CG field: 3D animation, geometric modelling, human computer interfaces, scientific visualisation and collaboration, etc. When asked about their computer experience, 98% of the participants use a computer on a daily basis. Windows XP was the most used platform with 80% use rate, followed by Linux with 41%. Additionally, Internet Explorer is the most used internet browser (61%), closely followed by Mozilla Firefox (59%), Netscape (16%), and Konqueror (9%). Overall, we feel the collected data is diverse and a representative sample of the target audience.

2.1 Involvement in CGEMS

About two-thirds of the participants (66%) learned about CGEMS through ACM (http://www.acm.org) Special Interest Group on Computer Graphics (ACM/SIGGRAPH) (http://www.siggraph.org) and/or Eurographics, the European Association for Computer Graphics (http://www.eg.org). This is a strong indicator that the two Associations, their annual conferences and a link from their respective websites provide the most effective ways to advertise CGEMS. 11% found out from a mail message; through a friend, through a publication, and from a search site were the other options for learning about CGEMS.

When asked about the role that best described their participation, 48% were mailing list subscribers, 36% were registered or reviewer volunteers, 30% were interested in the published materials, and 20% (nine participants) were interested, but they did not feel a part of CGEMS. The fact that only 13 (out of 44) participants expressed that they were interested in the materials makes us think that either the Module (resource) itself can be an impediment to submissions, or the take-up by the community would be slower than we anticipated.

2.2 Barriers to participation

When asked to indicate barriers to participation, half the participants (48%) identified the two key obstacles to be: ‘no suitable template/guideline for submission’ (23%) and that ‘it is too much work’ (25%). During 2006, we have built a Module template that we provide together with the guidelines for submission. Regretfully, this work also needs the contribution of the community that, as it seems, requires new incentives for participation. 11% does not see the value of submitting resources to CGEMS and 9% of the participants are too busy. The main obstacle for these findings is probably the current Module submission process. It is also interesting to notice that two participants do not think the work pays off and one considers the review process to be very slow. The results of these questions provide good indicators regarding content organisation and the current module and review processes. Figure 2 summarises these results.
2.3 Community tools

In order to understand and prioritise the missing tools needed to support the online community; we asked participants to rate eight questions, according to their importance/value, using the criteria: 1 = not at all valuable, 2 = maybe valuable, 3 = valuable, 4 = very valuable. Figure 3 shows the findings.

Results show that 91% of the participants agree that users should be able to rate Modules, to post comments (89%), and to engage in an online discussion using internet forums (80%). This is very common, nowadays, in other digital libraries, in many electronic commerce websites, and in social networking environments. Online users buy/download ‘things’ that they know already or that others talk well about. Indeed, being able to comment and rate resources may serve as a good indicator on the Module’s quality and use. 66% agreed that comments/ratings should be moderated (before posting) and that either the original assigned reviewers (31%) or the editor-in-chief (34%) should have that responsibility. We believe moderating is an important feature to avoid spam messages and other types of messages that could be incorrect or offensive. Users must be registered to be able to perform this. 77% agree that it would be valuable to read Module reviews to better evaluate the materials usefulness.
Informing the community about which reviewers are registered and working at CGEMS was considered to be valuable (18%) or very valuable (41%) by 59% of the participants. Alternatively, participants did not find checking the list of authors that are registered but have not yet contributed to be of value (82%). This makes sense, why should we inform about who is registered, if they have not yet contributed? Indeed, only active participants (contributors and reviewers) should be listed.

61% did not consider valuable the need for users to be registered before being able to download modules from the repository. We thought this would be an important requirement. The obtained percentage is not significant to completely abandon this feature, but further analysis is still required.

Reviewers’ anonymity was preserved by 68% of the participants. Note that 14% considered this to be very valuable to the system; although we know from experience that conferences and journals hide this information to avoid conflicts among authors and assigned reviewers.

2.4 Interoperability and content organisation

Almost all participants (98%) find it valuable to connect the ACM and Eurographics digital libraries with CGEMS. We agree with this opinion since this would bring greater visibility to the resources, to the authors, and, therefore, to the overall concept. Finally, we asked how many people had already visited the CGEMS website, 77% had already and 59% believe it to be well organised. This low percentage is not odd since we have already validated this problem during the usability tests conducted in late 2005 (Figueiredo, 2007).
2.5 Participant comments

As stated earlier, the survey contained one open-ended question that allowed participants to provide comments on how to continue and improve CGEMS. A total of 23 comments (54%) were given. Although most were already covered in the previous sections, we highlight the most significant here, including:

- the slow evaluation process; indeed, in the first three years, the review and publication process was too slow mainly due to our focus in extending the community platform
- the need for more frequent updates (e.g., newsletter); Nielsen (2004) research shows that electronic newsletters are preferred over other media
- there were too few submissions available on the server; until late 2005, we only had one publication, but these have grown considerably over the last years (CGEMS now holds 16 publications)
- the module details page was not appealing (e.g., include image; scholar paper as HTML, browse the materials by classified curricula and books; etc.); we also validated this in our usability tests; in mid-2007, most CGEMS pages were redesigned accordingly
- the established procedure required too much work to submit educational modules
- the need to recruit more authors as to get a good base of accepted materials
- the lack of information and guidelines to each user role (reviewer, author, reader).

In the next sections, we will discuss these issues, our latest findings, and present a set of concrete proposals on how to continue improving CGEMS and its online community.

3 Discussion

From the results of the survey, we derived the following actions to make CGEMS a valuable and actively used platform for publishing and CG education: remove barriers for participation, provide author guidelines and submission examples, and offer added value and support to the community. Approaches to their actual implementation were already indicated in the feedback and described in the following sections.

3.1 Removing barriers to participation

CGEMS materials range from full-semester modules, course syllabi, lab notes, problem sets, teaching gems, and student work. They include a statement on the educational goals and educational settings, as well as the experiences made. Before the survey, authors were given complete freedom in the preparation of their discourse. However, this was identified as one of the key barriers preventing authors from submitting materials (48%).

Many survey participants (25%) perceived writing a full-fledged companion scholarly paper as too much work. This is because the proper development of educational material is both laborious and time-intensive, which does not justify in their view the added burden of writing a companion paper. We addressed this concern by creating online
forms to simplify and ease the submission process. Based on user comments, we added five new fields: a brief introduction, educational goals, methodology applied to meet these goals, assessment methods used, and screenshots. The previously required scholarly paper was dropped. Further, we plan to add user input directly to the material’s HTML page and let the system generate a printable PDF description.

The remaining respondents requested authoring guidelines, templates, and submission examples (23%). We examined the pipeline of previous submissions, respectively corresponding communications and reasons for delays, and set up matching instructions. The CGEMS editorial statement and policies now clearly states scope (CG-related fields) and copyright information. Recently, we switched from academic fair use to Creative Commons licensing to avoid the problems current copyright laws create for the sharing of information and online distribution. Creative Commons provide free, legal licences, localized to more than 30 countries worldwide. Other repositories such as MIT OpenCourseware and Connexions have also switched to Creative Commons. CGEMS submission types seem intelligible and did not cause any difficulties yet. While editors, authors, and reviewers agreed tacitly on the materials, the material documentation generally induced problems. To deal with this issue, we added details for each field in the submission form, and addressed the fields we found problematic in more detail: educational goals, methodology, and assessment. Authors are encouraged to use standard terminology, for which we included an explanation of the widespread Bloom (1956) taxonomy of learning objectives. Acceptability and publishing criteria were extracted from experiences with the first CGEMS submissions. Authors can now check against scope, copyright, technical barriers, documentation, and style before submitting or revising their work. This also seems to lower the reviewers’ load. We have accompanied the authoring guidelines with submission examples for categories that seem difficult to prepare, namely problem sets, teaching gems, and curricula (see below).

3.2 Moderate users comments

The survey shows that community members definitely want to comment (89%) and rate (91%) CGEMS materials. We agreed therefore to let registered users, not necessarily authors or reviewers, comment on material with a short note and a five-star rating. Anonymous comments should be possible; however, all notes should be moderated by the editors-in-chief before they become published. To facilitate the editors’ work, we plan to implement the comments moderation as a single-click e-mail notification with predefined choices: accept, offensive, not applicable, or spam. Rejected notes will be sent back to the commentator with a short explanation. Comments shall be optionally sent to the material’s author.

3.3 CGEMS member profiles

Identity is an important part of community building. Members of a community require a personal involvement and sense of expression for persistent involvement. Identity helps us form bonds and network with other participants in a community. Apart from collecting materials, the community must be given added value and support, otherwise, they will not participate. The key value CGEMS offers to authors is peer recognition and opportunities to network with others. We plan to strengthen this value by adding CGEMS profiles for
registered and active users. User profiles should include the member’s photograph, affiliation, biographical notes, contact, and homepage. Published CGEMS material will become automatically listed on the author’s profile, as well as his CGEMS favourite published materials. Note that this approach might create a ‘who’s who in computer graphics education’, a consequence that the CGEMS editorial board must recognise and establish carefully. This feature is currently being implemented and will be available in the near future (4Q 2008 at the time of this writing).

3.4 Sort by CG curricula and books

As a major added value, we have extended CGEMS submission types to curricula. CG-related curricula evolve constantly due to emerging technologies and structures. The ACM SIGGRAPH Education Committee for example has sponsored the Computer Graphics Taxonomy Project (Morie, 2001) and the Curriculum Knowledge Base working group (Laxer and Orr, 2006). The CGE workshop series have similar aims: currently, participants aim to define an international CG curriculum that respects the European Bologna requirements and reflects the international nature (Bourdin et al., 2006). A CGEMS curriculum specifies its body of knowledge (BOK) with knowledge areas, units, and exemplary topics, and includes in conformance to other categories a matching documentation of educational goals, notes on its application, and available experiences.

First and foremost, publishing a curriculum in CGEMS means it is refereed by recognised members of the international CG community, which in turn, increases chances that institutions actually adopt it. We have received two curricula submissions so far. A Computer Animation curriculum and, a second, representing the final output of the Curriculum Knowledge Base working group of the ACM SIGGRAPH Education Committee.

There is more benefit to CG curricula. For now, CGEMS categories organise materials without superimposing any structure. The reason for this is that there is no single canon for CG education. CG educators follow different paths through different topics, and many of them would not accept a single structuring. Still, teachers and learners require structure for browsing and finding materials in the material pool. Published CGEMS curricula can now provide complementary views by overlaying not one, but many structures onto the unstructured CGEMS categories. With any new curriculum included into the platform, CGEMS categories can be sorted into the curriculum structure, which would allow end users to select their preferred structuring, and browse the materials accordingly. A search could also be offered using specific (sub)structures.

As a first step towards this functionality, we have enabled the CGEMS system to process published curricula by requiring a strict BOK format in the authoring guidelines. Any BOK must be structured into three levels (Schackelford et al., 2005). The first level lists knowledge areas, particular disciplinary subfields identified by a two or three letter abbreviation (e.g., CA for computer animation). The second level lists individual, smaller units within a knowledge area; a numeric suffix is added to the area (e.g., CA1 for motion). Each unit can be further subdivided into a set of topics; topics are merely examples and are neither formally prescriptive nor proscriptive.

Another source for structuring would be published CGEMS books. Their tables of contents provide the structure, and their lists of keywords naturally supply the attaching of categories to the content. We have extended the authoring guidelines to require book
References state pages, chapters, and sections. This directs users to the exact section in the book, which is covered by the material: educators and learners can now be supported in finding material for their in-class demos and homework, and students can be guided in studying the reading at hand. A book’s table of contents could further be used to search for material in the adjacent sections. The same approach could finally extend to other, classic CG books – if copyright holders agree.

3.5 Further integration into the CG community

Based on the fact that many participants (66%) learned about CGEMS through SIGGRAPH and Eurographics, we are moving towards further integration of CGEMS into these organisations. We have set up a call for materials to be executed along the annual SIGGRAPH conference, together with an award jury that nominates best materials. The winner receives free conference access, sponsored by the ACM SIGGRAPH Education Committee. Since the first call in 2006, several authors have stated this added motive to submit, which is supported by the fact that many of them were submitted close to the competition deadline.

While in the first year, nearly all materials were rejected; (six of 15 were published in 2007 and seven of 11 in 2008) CGEMS seems to have grown a common sense of what makes good educational work in the field, and whether it can really be shared and applied in other educational setups. We see this as a major contribution of our work to the CG community. Figure 4 shows the increasing number of submissions and publications since late 2003. We believe it reflects a positive outcome of the measures we have identified and implemented so far. Until the date of this writing, we have eight unique submissions, six publications, and three modules rejected. To determine the expected status by the end of this year, we applied a linear extrapolation from the second half of 2007.

Figure 4 Number of modules submitted, published, and rejected over the last years (see online version for colours)
Lastly, since a connection between CGEMS and the SIGGRAPH/Eurographics, digital libraries clearly is appreciated (98%) and can increase outreach, we have started a content partnership with cgSource, the ACM SIGGRAPH Education Committee’s resource collection (Hanisch et al., 2007). Unlike CGEMS with its formal submission and peer review requirements, it is up to the online community to judge the quality of the materials published in cgSource. We have already settled licensing issues and defined the basic material exchange policies, mainly how cgSource materials can be forwarded to CGEMS in a simple, convenient manner – cgSource will establish a procedure for authors to enhance their submissions with the required documentation in order to submit to CGEMS. Likewise, materials found not to be appropriate for CGEMS might nevertheless be useful for cgSource, and will therefore be forwarded to cgSource; as they have already been peer-reviewed, most of the cgSource editorial pipeline can be bypassed.

4 Conclusions

The feedback gained from the survey clearly points out further directions and endeavours to continue improving CGEMS. Indeed, supporting software and the right set of tools (e.g., bulletin boards) are not enough per se to create and maintain an active online community. We have already set up author guidelines and created submission templates and examples. The scholarly paper requirement was replaced by a simple form-based user input explaining the submission. The main web pages were redesigned according to the results obtained from our usability tests. We have included visual indicators for licences and awards; awarded materials are planned to be further supplemented with an editor’s note expressing essentials of the reviewers’ feedback and anecdotes garnered from the editorial pipeline.

Over the past two years, we observed a significant growth around the CGEMS community, expressed not only in terms of the number of registered members (i.e., authors and reviewers), but also in terms of the quality of contributions. This is a clear indicator that the measures we have implemented, so far, have been instrumental to the continuous development of this online community.

Although the participation levels can yet be increased, we acknowledge that there is still a significant amount of work required of potential contributors to submit, review, and publish high-quality educational materials. Educators must find time, among their daily activities, to take their classroom materials and submit them to CGEMS. Without a doubt, the submission guidelines, examples, and categorisation have contributed to increase the number of submissions and publications. In addition, our continuous efforts to promote CGEMS at SIGGRAPH and Eurographics conferences were shown to be effective in this process. But there is still considerable work to do.

By including member profiles and CG curricula, this year, we expect, as result, an increased visibility and recognition of the value gained from contributing to CGEMS. Later on, in 2009, we plan to finally add moderated user comments. We have delayed the implementation of this requirement because firstly, we needed to work in getting new submissions, so that now they can be valued by users’ comments and ratings. With these activities, we hope to achieve the original CGEMS goals: a platform for spreading and recognising educational work in CG-related domains, and creating an environment where interactions between community members expand the field and generate high quality content for the future of CG education.
Acknowledgements

This work was supported in part by the European Commission grant Alfa II-0072A, by the ACM SIGGRAPH Education Committee and through the Eurographics Education board special projects fund.

References

