Identification of Regulatory Modules in Time Series Gene Expression Data using a Linear Time Biclustering Algorithm

Sara C. Madeira, Miguel C. Teixeira, Isabel Sá-Correia and Arlindo L. Oliveira, Member, IEEE

Abstract—Although most biclustering formulations are NP-hard, in time series expression data analysis, it is reasonable to restrict the problem to the identification of maximal biclusters with contiguous columns, that correspond to coherent expression patterns shared by a group of genes in consecutive time-points. This restriction leads to a tractable problem.

We propose an algorithm that finds and reports all maximal contiguous column coherent biclusters in time linear in the size of the expression matrix. The linear time complexity of CCC-Biclustering relies on the use of a discretized matrix and efficient string processing techniques based on suffix trees. We also propose a method for ranking biclusters based on their statistical significance and a methodology for filtering highly overlapping and, therefore, redundant, biclusters.

We report results in synthetic and real data showing the effectiveness of the approach and its relevance in the discovery of regulatory modules. Results obtained using the transcriptomic expression patterns occurring in Saccharomyces cerevisiae in response to heat stress, show not only the ability of the proposed methodology to extract relevant information compatible with documented biological knowledge, but also the utility of using this algorithm in the study of other environmental stresses, and of regulatory modules, in general.

Index Terms—Biclustering, time series gene expression data, expression patterns, regulatory modules.

I. INTRODUCTION

Recent developments in DNA chips enable the simultaneous measurement of the expression level of a large number of genes (virtually all the genes of an organism) for a given experimental condition [27]. In this context, several non-supervised machine learning methods have been extensively used in the analysis of gene expression data obtained from these microarray experiments. More recently, biclustering, a technique that aims at finding subgroups of genes that exhibit highly correlated behaviors in a subgroup of conditions has emerged as a way to identify potential regulatory mechanisms. The importance of biclustering in the identification of groups of genes with coherent expression patterns, and its advantages (when compared to clustering) in the discovery of local expression patterns has been extensively studied and documented [6], [21], [28]. We believe the use of these techniques is therefore critical to identify the dynamics of biological systems as well as the different groups of genes involved in each biological process.

Many approaches to biclustering in expression data have been proposed to date [21], [28]. Most specific versions of this problem have been shown to be NP-hard [31], and almost all the approaches presented to date are heuristic and are not guaranteed to find optimal solutions. In a few cases, exhaustive search methods have been used [37], limits are imposed on the size of the biclusters that can be found, in order to obtain reasonable runtimes. Furthermore, the inherent difficulty of the biclustering problem when dealing with the original expression matrix and the great interest in finding coherent behaviors regardless of the exact numeric values in the matrix, has also led many authors to a formulation based on a discretized matrix [3], [12], [14], [16]–[20], [23], [30], [33], [35], [37], [41]. Unfortunately, the discretized versions remain, in general, NP-hard.

There exists, however, an important restriction to the biclustering problem that has not been extensively explored and that leads to a tractable problem. This restriction is applicable when the expression data corresponds to snapshots in time of the expression level of the genes. In this experimental setup, the researcher is particularly interested in biclusters with contiguous columns, corresponding to samples taken in consecutive instants of time, which identify coherent expression patterns shared by a group of genes in consecutive time-points.

Our motivation to restrict the biclustering problem to the analysis of times series expression data and the identification of contiguous columns biclusters is twofold. First, time series expression experiments are an increasingly popular method for studying a wide range of biological phenomena and can therefore be used to answer a wide range of biological questions [1]. Second, several authors have already pointed out the importance of biclusters with contiguous columns [12], [42], and their relevance in the identification of regulatory processes. The biological support for this reasoning is the key observation that biological processes start and finish in a contiguous but unknown period of time, leading to increased (or decreased) activity of sets of genes that can be identified as biclusters with contiguous columns.

In this context, we propose the CCC-Biclustering algorithm, which finds and reports all maximal contiguous column coherent biclusters (CCC-Biclusters) in time linear in the size of the ex-
pression matrix by processing a discretized version of the original expression matrix and using efficient string processing techniques based on suffix trees. We also propose a statistical test that can be used to score the identified CCC-Biclusters, and to sort them by increasing value of the probability that they have appeared by a random coincidence of events, and a method to filter and remove highly overlapping, and, therefore, redundant CC-Biclusters. We show the effectiveness of the proposed approach in recovering planted CCC-Biclusters, in synthetic datasets, and its ability to find regulatory modules in real data.

This paper is organized as follows: Section II surveys the related work. Section III provides the problem formulation. Section IV describes the algorithm. Section V proposes a scoring schema for CCC-Biclusters based on statistical significance and similarity measures. Section VI presents experimental results performed with synthetic data, which show experimentally the predicted linear time complexity of the algorithm and its ability to recover planted CCC-Biclusters when coupled with the proposed statistical significance and similarity measures. Section VII shows a comparison with a heuristic approach developed for biclustering time series expression data and an application of CCC-Biclustering to the discovery of regulatory modules in yeast by using expression data related with the yeast response to heat stress. These results show the ability of the algorithm to discover biologically relevant CCC-Biclusters, corresponding to co-expressed genes, which are shown to be co-regulated by a set of common transcription factors and highly functionally enriched in one or more Gene Ontology terms. Finally, Section VIII presents the conclusions and directions for future work.

II. RELATED WORK

A. Biclustering Algorithms for Time Series Expression Data

Although a large number of biclustering algorithms have been proposed to address the general problem of biclustering [21] [28], to date and to our knowledge, only two recent proposals have addressed the problem of biclustering in time series expression data [12], [42].

Zhang et al. [42] proposed the CC-TSB algorithm, which is based on the work by Cheng and Church [6] and uses directly the values in the expression matrix. Due to its heuristic nature, this approach is not guaranteed to find the optimal set of biclusters. We will compare our method against this work in Section VII-A.

A different approach, from Ji and Tan [12], works with a discretized expression matrix. As in the present work, they are also interested in identifying biclusters formed by consecutive columns. Therefore, if appropriately implemented, their idea would generate exactly the same biclusters as the ones generated by our method. The exact complexity of their algorithm is hard to estimate from the description, but it is at least \(\Omega(|R||C|^2)\), and hence the CCC-Biclustering algorithm we propose is at least a factor of \(\Theta(|C|)\) times faster.

B. Discretization Techniques used in Time Series Expression Data Analysis

Most discretization techniques commonly applied to gene expression data use absolute expression values based on the following concepts: average and standard deviation [14], [33], [37], percentage of values [2], [32]; equal width intervals [2], [32]; equal frequency [35]; linear order between the conditions [3], [4], [16]–[19] and statistically significant states [30], [41].

Some discretization techniques have, however, been proposed specifically for time series gene expression data and are based on the transitions in expression states between successive time-points [8], [11], [12], [15], [29]. These techniques use either two [8], [15], [29] or three symbols [11], [12] and are usually preceded by a normalization step which standardizes the gene expression time series to zero mean and unit standard deviation.

When studying the impact of discretization on biclustering we have concluded that the techniques based on transitions between time-points obtain better results than those using absolute values [22]. This fact confirms our intuition and that of Schliep et al. [7], who claim that the methods for time series expression analysis that take explicitly into account the temporal dependencies between the time-points should perform better than those that neglect them.

III. PROBLEM DEFINITION

A. Gene Expression Data and Discretized Expression Matrix

Let \(A'\) be an \(|R|\) row by \(|C|\) column gene expression matrix defined by its set of rows (genes), \(R\), and its set of columns (conditions), \(C\). In this context, \(A'_{ij}\) represents the expression level of gene \(i\) under condition \(j\). Let \(A'_{iC}\) and \(A'_{iR}\) denote row \(i\) and column \(j\) of matrix \(A'\), respectively.

In this work, we address the case where the gene expression levels in matrix \(A'\) can be discretized to a set of symbols of interest, \(\Sigma\), which represent distinctive activation levels. In the simpler case, \(\Sigma\) may contain only two symbols, one used for no-regulation and other for regulation, \(\{N,R\}\), or simply \(\{0,1\}\). Another widely used possibility, is to consider a set of three symbols, \(\{D,N,U\}\), meaning DownRegulated, NoChange and UpRegulated, or simply \(\{-1,0,1\}\). In other applications, the values in matrix \(A'\) may be discretized to a larger set of symbols.

After the discretization process, matrix \(A'\) is transformed into matrix \(A\). \(A_{ij} \in \Sigma\) represents the discretized value of the expression level of gene \(i\) under condition \(j\).

We use the discretization proposed by Ji and Tan [11], [12]. The discretized matrix \(A\) is obtained in two steps. In the first step, \(A'\) is transformed into an \(A'' = |R| \times (|C| - 1)\) matrix of variations, as described in (1). Once matrix \(A''\) is generated, the final discretized matrix \(A\), also with \(|R|\) rows and \(|C| - 1\) columns, is obtained in a second step by binning the values of the transformed matrix considering a threshold \(t > 0\) (see (2)).

\[
A'_{ij} = \begin{cases}
\frac{A'_{ij} - A'_{i j+1}}{|A'_{ij}|} & \text{if } A'_{ij} \neq 0 \\
1 & \text{if } A'_{ij} = 0 \text{ and } A'_{i (j+1)} < 0\\
0 & \text{if } A'_{ij} = 0 \text{ and } A'_{i (j+1)} > 0
\end{cases}
\]

\[
A_{ij} = \begin{cases}
D & \text{if } A''_{ij} \leq -t \\
U & \text{if } A''_{ij} \geq t\\
N & \text{otherwise}
\end{cases}
\]

\(^2\)This discretization technique should be preceded by a normalization step, which normalizes each gene expression pattern to a given mean and standard deviation, since the binning process uses variations between consecutive time-points and the same threshold \(t\) for all the genes in matrix \(A'\). As Ji and Tan, we standardized \(A'\) to zero mean and unit standard deviation by gene and set the threshold \(t\) to the standard deviation value \((t = 1)\).
B. Biclusters in Discretized Expression Data

Consider now the matrix A, corresponding to the discretized version of the original expression matrix A'.

Definition 1 (Bicluster and Trivial Bicluster): A bicluster $B = (I, J)$ is a sub-matrix $A_{I,J}$ defined by $I \subseteq R$, a subset of rows, and $J \subseteq C$, a subset of columns. A bicluster with only one row or one column is called trivial.

The goal of biclustering algorithms is to identify a set of biclusters $B_k = (I_k, J_k)$ such that each bicluster satisfies specific characteristics of homogeneity. These characteristics vary in different applications [21]. In this work we will deal with biclusters that exhibit coherent evolutions:

Definition 2 (CC-Bicluster): A column coherent bicluster $A_{I,J}$ is a bicluster such that $A_{i,j} = A_{i',j}$ for all rows $i, i' \in I$ and columns $j \in J$.

Finding all maximal biclusters satisfying this coherence property is known to be an NP-hard problem [31].

C. CC-Biclusters in Time Series Expression Data

Since we are interested in the analysis of time series expression data, we can restrict the attention to potentially overlapping biclusters with arbitrary rows and contiguous columns [12], [42]. This fact leads to an important complexity reduction and transforms this particular version of the biclustering problem into a tractable problem. In this context, we can define the type of biclusters we are interested in this work and the important notion of maximality:

Definition 3 (CCC-Bicluster): A contiguous column coherent bicluster, $A_{I,J}$, is a subset of rows $I = \{i_1, \ldots, i_k\}$ and a contiguous subset of columns $J = \{r, r+1, \ldots, s-1, s\}$ such that $A_{i,j} = A_{i',j}$ for all rows $i, i' \in I$ and columns $j \in J$. Each CCC-Bicluster defines a string S that is common to every row in I for the columns in J.

Definition 4 (Row-Maximal CCC-Bicluster): A CCC-Bicluster $A_{I,J}$ is row-maximal if we cannot add more rows to I and maintain the coherence property in Definition 3.

Definition 5 (Left-Maximal and Right-Maximal CCC-Bicluster): A CCC-Bicluster $A_{I,J}$ is left-maximal/right-maximal if we cannot extend its expression pattern S to the left/right by adding a symbol (contiguous column) at its beginning/end without changing its set of rows I.

Definition 6 (Maximal CCC-Bicluster): A CCC-Bicluster $A_{I,J}$ is maximal if no other CCC-Bicluster exists that properly contains it, that is, if for all other CCC-Biclusters $A_{L,M}$, $I \subseteq L \land J \subseteq M \Rightarrow I = L \land J = M$.

This definition implies Lemma 1, that we present without proof:

Lemma 1: The maximal CCC-Biclusters are exactly the CCC-Biclusters that are right, left and row-maximal.

Figure 1 shows an example of a discretized expression matrix together with its maximal CCC-Biclusters. For clarity, we omit the maximal CCC-Biclusters with only one row (gene), which are uninteresting from a biological point of view.

We can now formulate the problem solved in this work: identify and report all maximal CCC-Biclusters, given a discretized expression matrix. In order to do so we propose a linear time biclustering algorithm that uses efficient string processing techniques based on suffix trees.

IV. BICLUSTERING TIME SERIES EXPRESSION DATA USING SUFFIX TREES

A. Strings and Suffix Trees

The definitions used in this section are adapted from Gusfield [10], a well known reference on the subject.

Definition 7 (String, Substring and Suffix): A string S is an ordered list of symbols over an alphabet Σ (with $|\Sigma|$ symbols) written contiguously from left to right. For any string S (with $|S|$ symbols), $S[i..j]$ ($i \geq 0, j \leq |S|$) is its (contiguous) substring starting at position i and ending at position j. $S[i..|S|]$ is the suffix of S that starts at position i.

Definition 8 (Suffix Tree and Generalized Suffix Tree): A suffix tree T of a string S is a rooted directed tree with exactly $|S|$ leaves, numbered 1 to $|S|$, such that: 1) each internal node in T, other than the root, has at least two children and each edge is labeled with a nonempty substring of S; 2) no two edges out of a node have edge-labels starting with the same symbol; 3) for any leaf i, the label of the path from the root to the leaf i exactly spells out the suffix of S starting at position i. A generalized suffix tree is a suffix tree built for a set of strings $\{S_i\}$.

In order to construct a suffix tree obeying this definition, when one suffix of S matches a prefix of another suffix of S, we add a symbol (terminator), that does not appear anywhere else in the string, to its end (usually the symbol $\$$ is used). In the case of generalized suffix trees, we add a unique terminator to the end of each string S_i.

Suffix trees can be built in time linear in the size of the string S using several algorithms [26], [34], [40]. Generalized suffix trees, can be easily obtained by consecutively building the suffix tree for each string S_i. This construction is linear in the sum of the sizes of the set of strings $\{S_i\}$.

Definition 9 (String-Depth and String-Label): The stringdepth of a node v in T, $P(v)$, is the sum of all edge-lengths in the path from the root to v. This path is the string-label of v.

Definition 10 (Suffix Link): Let $x\alpha$ denote an arbitrary string, where x denotes a single symbol and α denotes a (possibly empty) substring. For any internal node v with string-label $x\alpha$, if there is another node u with string-label α then a pointer from v to u is called a suffix link. As a special case, if α is empty then $x\alpha$ has a suffix link leading to the root.
B. CCC-Biclusters and Suffix Trees

We now develop our linear time biclustering algorithm.

Before presenting the central idea of this work, which relates CCC-Biclusters and nodes in a suffix tree, we introduce a simple alphabet transformation (performed as a preprocessing step in the algorithm) that appends the column number to each symbol in the matrix. For that, we consider a new alphabet $\Sigma' = \Sigma \times \{1, \ldots, |C|\}$, where each element Σ' is obtained by concatenating one symbol in Σ and one number in the range $\{1, \ldots, |C|\}$. Consider now the set of strings $\{S_1, \ldots, S_{|R|}\}$ obtained by applying this alphabet transformation to each row A_{iC} in matrix A. Figure 2(b) shows the result of this transformation applied to the discretized matrix shown in Fig. 1.

We will now show that the maximal CCC-Biclusters in the original matrix A correspond exactly to nodes in the generalized suffix tree T built from the set of strings $\{S_1, \ldots, S_{|R|}\}$. We will show later that the increase in the alphabet size resulting from the alphabet transformation will not affect the linear time construction and manipulation of the suffix tree.

Consider a node v in T together with its string-depth, $P(v)$. Let $L(v)$ denote the number of leaves in the sub-tree rooted at v, in case v is an internal node.

Figure 2(a) illustrates the generalized suffix tree obtained from the strings that correspond to the rows of the matrix shown in Fig. 2(b). For clarity, this figure does not contain the leaves that represent string terminators that are direct daughters of the root. Each non-terminal node, other than the root, is labeled with the value of $L(v)$, the number of leaves in its subtree. We show the suffix links between nodes although (for clarity) we omit the suffix links pointing to the root.

By analyzing this illustrative example, it is easy to verify that every internal node in T corresponds to one row-maximal, right-maximal CCC-Bicluster in matrix A. This is so because an internal node v in T corresponds to a given substring that is common to every row that has a leaf rooted at v. Therefore, each internal node v defines a CCC-Bicluster that has $P(v)$ columns and a number of rows equal to $L(v)$. It is also true that all leaves except those whose edge-label is simply a terminator also identify CCC-Biclusters. However, some of these CCC-Biclusters are non-maximal (internal nodes with string-labels $D3U4$ and $N5$ and all leaf nodes whose $P(v)$ is different from the number of columns in A). We will show that an internal node corresponds to a maximal CCC-Bicluster iff there is no incoming suffix link from a node with the same value of $L(v)$. As such, only the internal nodes with string-labels $N1$, $U2D3U4$, $U4$ and $U4N5$ identify maximal CCC-Biclusters with at least two rows. These nodes correspond to the maximal CCC-Biclusters $B_1 = \{(G1,G3), \{C1\}\}$, $B_2 = \{(G1,G2,G4), \{C2,C3,C4\}\}$, $B_3 = \{(G1,G2,G3,G4), \{C4\}\}$ and $B_4 = \{(G1,G3), \{C4,C5\}\}$. Note that, the rows in each CCC-Bicluster identified by a given node v are obtained from the terminators of the leaves in its subtree. Moreover, the value of $P(v)$ and the first symbol in the string-label of v provide the information needed to identify the set of contiguous columns.

Using the illustrative example in Fig. 2 we have shown that all internal nodes in the generalized suffix tree T correspond to CCC-Biclusters in matrix A, and that some of these CCC-Biclusters may not be maximal. We will now present, with sketches of the proofs, the two lemmas that lead to the theorem that supports our linear time biclustering algorithm. For the sake of clarity, we will consider only CCC-Biclusters with at least two rows.

CCC-Biclusters with one row are trivial and uninteresting, and considering them would unnecessarily complicate the proofs.

Lemma 2: Every right-maximal, row-maximal CCC-Bicluster with at least two rows corresponds to one internal node in T and every internal node in T corresponds to one right-maximal, row-maximal CCC-Bicluster with at least two rows.

Proof: Let B be a right-maximal, row-maximal, CCC-Bicluster with at least two rows. Every row in B shares the substring that defines B. Since B is right-maximal, at least one of the rows in B must have a symbol (possibly the terminator symbol) that differs from the symbol in the other rows in column j, which is the column after the last column in B. Therefore, there is an internal node in T that matches B and the string-label of that node is the string that defines B. For the other direction, each internal node in T defines one string, which is present in two or more rows in matrix A, and at least one of these rows has a symbol different from the others in column j, which is again the column after the last column in B. If this was not the case, there would not exist an internal node in T.

To distinguish the nodes that correspond to left-maximal CCC-Biclusters, we introduce the following definition:

Definition 11 (MaxNode): An internal node v of T is called a MaxNode iff it satisfies one of the following conditions:

a) It does not have incoming suffix links.

b) It has incoming suffix links only from nodes u_i such that, for every node u_i, $L(u_i) < L(v)$.

Consider now two nodes in the suffix tree, v_1 and v_2. Notice that if there is a suffix link from node v_1 to node v_2, the CCC-Bicluster defined by v_2 contains one less column than the CCC-Bicluster defined by v_1. This leads us to the last lemma:

Lemma 3: An internal node in T corresponds to a left-maximal CCC-Bicluster iff it satisfies Definition 11.

Proof: The string-label $s = P(v)$ of a node v satisfying the conditions of the lemma defines a CCC-Bicluster B in A with at least two rows. If node v has no incoming suffix links, then it corresponds to either a CCC-Bicluster starting in column 1 in A or is defined by a string s such that, xs is present in a single row in A (xs is the string-label of a leaf node in T). Therefore, B is left-maximal, since, in both cases, it cannot be extended to the left without losing rows. If node v has incoming suffix links from nodes u_i such that, $L(u_i) < L(v)$, then B is left-maximal, since the CCC-Biclusters defined by nodes u_i have less rows than B. For the other direction, if an internal node v has one incoming suffix link from a node u such that, $L(u) = L(v)$ ($L(u) > L(v)$ can never happen), then the CCC-Bicluster B defined by v can be extended to the left keeping the same set of rows. Therefore, v does not define a left-maximal CCC-Bicluster.

We now present our main result.

Theorem 1: Every maximal CCC-Bicluster with at least two rows corresponds to an internal node in the generalized suffix tree T that satisfies Definition 11, and each of these internal nodes defines a maximal CCC-Bicluster with at least two rows.

Proof: Let B be a maximal CCC-Bicluster with at least two rows. By Lemma 2 this CCC-Bicluster corresponds to an internal node v in T. Since B is left-maximal (Lemma 1), node v must satisfy Definition 11 (Lemma 3). For the other direction, let v be an internal node in T satisfying Definition 11. By Lemma 2 node v corresponds to a right-maximal, row-maximal bicluster. If v also satisfies Definition 11 then B is also left-maximal, and, therefore, B is maximal.
Biclusters and are reported. All the remaining internal nodes correspond to maximal CCC-Biclusters with at least two strings |, so because, after the alphabet transformation, the string-label of an internal node corresponds to an expression pattern of the maximal CCC-Biclusters B1, B2, B3 and B4, respectively.

C. CCC-Biclustering: A Linear Time Biclustering Algorithm for Finding and Reporting all Maximal CCC-Biclusters

Theorem 1 directly implies that there is an algorithm that finds and reports all maximal CCC-Biclusters in a discretized and transformed gene expression matrix A in time linear in the size of the matrix. Algorithm 1 builds a suffix tree for the set of strings \(\{S_1, \ldots, S_{|R|}\} \), obtained using the alphabet transformation described in Section IV-B, and checks, for each internal node, whether the conditions of Theorem 1 are met. Nodes that do not meet the required conditions are marked as invalid in line 10. All the remaining internal nodes correspond to maximal CCC-Biclusters and are reported.

Algorithm 1: CCC-Biclustering

```plaintext
input: Discretized gene expression matrix $A$
1 Perform alphabet transformation and obtain \( \{S_1, \ldots, S_{|R|}\} \).
2 Build a generalized suffix tree $T$ for \( \{S_1, \ldots, S_{|R|}\} \).
3 for each internal node $v \in T$ do
4    Mark $v$ as “Valid”.
5    Compute the string-depth $P(v)$.
6    for each internal node $v \in T$ do
7        Compute the number of leaves $L(v)$ in the subtree rooted at $v$.
8        for each internal node $v \in T$ do
9            if there is a suffix link from $v$ to a node $u$ and $L(u) = L(v)$ then
10               Mark node $u$ as “Invalid”.
11            for each internal node $v \in T$ do
12                if $v$ is marked as “Valid” then
13                   Report the CCC-Bicluster that corresponds to $v$.
```

D. Complexity Analysis of CCC-Biclustering and Implementation Issues

With appropriate data structures at the nodes and using Ukkonen’s algorithm [40], the suffix tree construction time is linear on the size of the input matrix, $O(|R||C|)$. The remaining steps of the CCC-Biclustering algorithm are also linear since they are performed using depth-first searches (dfs) on the suffix tree. Since any tree has fewer internal nodes than leaves, the linear time complexity of Algorithm 1 is an immediate result.

One issue, however, deserves a special reference. It is a well known fact that the complexity of suffix tree construction has a dependence on the alphabet size that becomes important when the alphabet is large [10]. Therefore, one has to ensure that the increase in the alphabet size from |Σ| to |$C||\Sigma$| due to the alphabet transformation described in Section IV-B does not affect the linear time complexity of our algorithm. In fact, only one internal node, the root, has a number of children that depends on the number of columns. As can be observed in the suffix tree for the example in Fig. 2, all internal nodes other than the root have a number of children that is not affected by the number of columns. This is so because, after the alphabet transformation, the string-label of an internal node corresponds to an expression pattern common to a set of genes, between a contiguous set of time-points, which always starts at a specific time-point. This leads to a maximum number of children that is $O(|\Sigma|)$ and not $O(|C||\Sigma|)$.

Internal nodes that have as children only leaf nodes with edges labeled by terminator symbols, may have a number of children that grows with the number of rows in the matrix but this number does not depend on the number of columns. The dependence on the number of rows is not a problem since standard implementations of generalized suffix trees avoid non-linear dependencies on the number of terminators by using the appropriate data structures. In this context, and since the alphabet transformation only influences the outdegree of the root, we guarantee that the branching at the root is performed in constant time, and the total complexity of CCC-Biclustering is $O(|R||C|)$.

V. SCORING CCC-BICLUSTERS USING STATISTICAL SIGNIFICANCE AND SIMILARITY MEASURES

Since applying biclustering to real gene expression matrices can produce hundreds or even thousands of biclusters, an objective evaluation of the quality of the biclusters discovered is crucial. In fact, the inspection of biclustering results can be prohibitive without an efficient scoring approach which enables sorting and
filtering the results according to a statistical scoring criterion. The statistical significance of the results can then be combined with measures of biological significance in order to produce a set of interesting and potentially useful biclusters, both from the statistical and biological point of view.

For CCC-Biclusters, we propose the use of a scoring criterion, which combines two criteria: (1) statistical significance of expression pattern, and (2) similarity with another overlapping CCC-Bicluster. CCC-Biclusters are sorted by increasing order of the computed p-value, and, if several of them are very similar, only the most significant ones are kept.

A. Statistical Significance

We propose to measure the statistical significance of a CCC-Bicluster \(B \) of size \(|I| \times |J|\), where \(I \) is the set of genes and \(J \) is the set of contiguous time-points, and expression pattern \(p_B \), against the null hypothesis, \(H_0 \), that assumes that the expression values of genes evolve independently.

Under the null hypothesis, it is possible to compute, using reasonable simplifying assumptions, the probability of a CCC-Bicluster of the considered size and expression pattern occurring by chance in an expression matrix with \(|R|\) genes and \(|C|\) time-points. The value of this probability is obtained by computing the tail of the binomial distribution \(P \), which gives the probability of an event with probability \(p \) occurring \(k \) or more times in \(n \) independent trials:

\[
P = \sum_{j=k}^{n} \binom{n}{j} p^j (1-p)^{n-j}
\]

The statistical significance of a CCC-Bicluster \(B \) is the p-value \(B \), which is computed by obtaining the probability of a random occurrence under \(H_0 \) of the expression pattern \(p_B \) \(k = |I| - 1 \) times in \(n = |R| - 1 \) independent trials, where \(I \) is the number of genes in \(B \) and \(|R| \) is the total number of genes in the expression matrix.

We use the simplifying assumption that the probability of occurrence of a specific expression pattern \(p_B \), \(P(p_B) \), is adequately modeled by a first order Markov Chain, with state transition probabilities obtained from the values in the corresponding columns in the matrix. For example, if \(B = \{(G1,G2,G4), (C2,C3,C4)\} \), corresponding to CCC-Bicluster B2 in Fig. 2(b), with expression pattern \(p_B = U2D3U4 \), then

\[
P(p_B) = P(U2D3U4) = P(U2)P(D3|U2)P(U4|D3),
\]

where:

\[
P(U2) = \frac{|U2|}{|R|},
\]

\[
P(D3|U2) = \frac{P(U2D3)}{P(U2)} = \frac{|U2D3|}{|U2|},
\]

and

\[
P(U4|D3) = \frac{P(D3U4)}{P(D3)} = \frac{|D3U4|}{|D3|}.
\]

These probabilities are, in this case, computed using the gene expression matrix after alphabet transformation in Fig. 2(b). The values \(|U2|, |U2D3|, |D3| \) and \(|D3U4| \) correspond, respectively, to the number of occurrences of symbol \(U2 \), the number of transitions from \(U2 \) to \(D3 \), the number of occurrences of symbol \(D3 \), and the number of transitions from \(D3 \) to \(U4 \).

To speed up the computation, the value of \(P(p_B) \) for each pattern \(p_B \) can be computed and stored in the internal nodes, while traversing the suffix tree, and at the same time that the maximal CCC-Biclusters are identified. Note that we do not need to compute values of \(P(p_B) \) for the leaf nodes, since these CCC-Biclusters with only one row are not reported.

B. Similarity Measure

In order to compute the similarity measure between two CCC-Biclusters, \(B_1 = (I_1,J_1) \) and \(B_2 = (I_2,J_2) \), we use the Jaccard Index. In this work, this score is used to measure the overlap between two CCC-Biclusters both in terms of genes and conditions and is defined as follows:

\[
J(B_1, B_2) = \frac{|B_1 \cap B_2|}{|B_1| + |B_2| - |B_1 \cap B_2|}
\]

where:

\[
B_{11} = \{(i,j) : (i,j) \in B_1, \neg((i,j) \in B_2)\},
\]

\[
B_{10} = \{(i,j) : (i,j) \in B_1, (i,j) \in B_2\},
\]

and

\[
B_{01} = \{(i,j) : (i,j) \notin B_1, (i,j) \in B_2\},
\]

for the genes \(i \in I_1 \cup I_2 \) and the conditions \(j \in J_1 \cup J_2 \).

Similarly, the gene similarity and condition similarity can be computed, respectively, as follows:

\[
J(I_1, I_2) = \frac{|I_1 \cap I_2|}{|I_1| + |I_2| - |I_1 \cap I_2|}
\]

and

\[
J(J_1, J_2) = \frac{|J_1 \cap J_2|}{|J_1| + |J_2| - |J_1 \cap J_2|}.
\]

Note that, in practice, and since \(|B_1| = |I_1| \times |J_1|\) and \(|B_2| = |I_2| \times |J_2|\), the similarity measure as defined in (3) can be computed easily using the fact that:

\[
|B_1 \cap B_2| = |I_1 \cap I_2| \times |J_1 \cap J_2|
\]

and

\[
|B_1 \cup B_2| = |B_1| + |B_2| - |B_1 \cap B_2|.
\]

To speed up the process, only the CCC-Biclusters that have been identified as statistically significant are processed during this last phase of the filtering process.

VI. EXPERIMENTAL RESULTS WITH SYNTHETIC DATA

In order to validate experimentally the proposed approach in terms of the predicted linear time complexity and the ability to recover relevant CCC-Biclusters, we performed experiments on synthetic data, using a prototype implementation of the algorithm coded in Java.

We have first validated the predicted linear time complexity by generating synthetic matrices with random values, in which 10 CCC-Biclusters, with dimensions ranging from 15 to 25 rows and 8 to 12 columns, were hidden. The size of the matrices varied from \(250 \times 50 \) (rows \times columns) up to \(1000 \times 250 \). We used a three symbol alphabet, \(\Sigma = \{U, D, N\} \). These experiments have also shown a clear linear relationship between the variation of the CPU time and the size of the input data matrix over several orders of magnitude [23]. In all cases, we recovered the planted CCC-Biclusters, together with a number of CCC-Biclusters overlapping with the planted biclusters and a large number of artifacts that result from random coincidences in the data matrix.
For illustrative purposes, we describe here the results obtained in the 1000 rows by 50 columns example. For this example, two experiments were carried out. In the first experiment, no planted CCC-Biclusters existed. In this case, a total of 42,030 maximal non-trivial CCC-Biclusters were identified. None of these CCC-Biclusters passed the statistical significance test described in Section V-A at a 1% level (after Bonferroni correction). In the second experiment, 10 CCC-Biclusters with the aforementioned dimensions were planted. See Table I for details.

Table I

<table>
<thead>
<tr>
<th>ID</th>
<th>Expression Pattern</th>
<th>#Time-Points(first-last)</th>
<th>#Genes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NUNUUNDDNDNU</td>
<td>12(21-32)</td>
<td>19</td>
</tr>
<tr>
<td>2</td>
<td>NNUDUNNNNU</td>
<td>9(1-9)</td>
<td>15</td>
</tr>
<tr>
<td>3</td>
<td>NUNDNNDddUNNN</td>
<td>11(30-40)</td>
<td>19</td>
</tr>
<tr>
<td>4</td>
<td>NDUUDDDD</td>
<td>8(34-41)</td>
<td>16</td>
</tr>
<tr>
<td>5</td>
<td>UNUDUNDDR</td>
<td>10(2-11)</td>
<td>16</td>
</tr>
<tr>
<td>6</td>
<td>UDUNUDUUDD</td>
<td>9(37-45)</td>
<td>24</td>
</tr>
<tr>
<td>7</td>
<td>UDUNUDNNUDD</td>
<td>12(26-37)</td>
<td>19</td>
</tr>
<tr>
<td>8</td>
<td>NDUNUNUDD</td>
<td>9(25-33)</td>
<td>20</td>
</tr>
<tr>
<td>9</td>
<td>DNNDNDDNNDD</td>
<td>12(33-44)</td>
<td>18</td>
</tr>
</tbody>
</table>

CCC-Biclustering identified 40461 maximal non-trivial CCC-Biclusters in a few seconds. From these, 165 passed the statistical significance test at the 1% level (after Bonferroni correction). Most of these are variations of the planted CCC-Biclusters, that still pass the statistical significance test, because they include a large part of the planted pattern. Table II shows that after sorting the CCC-Bicluster using the statistical significance \(p \)-value described in Section V-A and filtering CCC-Biclusters whose similarity measure as defined in Section V-B is above 25%, the proposed approach is able to identify the planted CCC-Biclusters as the top 10 CCC-Biclusters\(^3\). After filtering the CCC-Biclusters with similarities above 25% only 37 CCC-Biclusters had a (Bonferroni corrected) \(p \)-value below 0.01\(^4\).

These results confirm that CCC-Biclustering, when coupled with the proposed scoring schema based on statistical significance and similarity measures, can be effectively used to identify even relatively small CCC-Biclusters that are statistically significant.

VII. Experimental Results with Real Datasets

A. Comparison with Heuristic Algorithms

The CC-TSB algorithm [42] described in Section II aims at finding groups of genes that exhibit coherent evolution on a subset of contiguous columns. Since this heuristic biclustering algorithm uses the gene expression values directly without relying on a discretization step we decided to compare its results with those of CCC-Biclustering in the same dataset and using the same parameters used by the authors.

\(^3\)CCC-Biclusters with IDs 2438, 15158 and 14145 have lost some genes, relatively to the original planted CCC-Biclusters. This was caused by the (artificial) way in which CCC-Biclusters were planted. When two or more CCC-Biclusters are overlapping, the expression patterns in the overlapping submatrices are those of the last planted CCC-Bicluster. For this reason, the genes in overlapping zones are lost for the previously planted CCC-Biclusters.

\(^4\)When coupled only with the statistical significance test, CCC-Biclustering is already able to identify the planted CCC-Biclusters. However, there is a number of highly overlapping CCC-Biclusters, which prevent the discovery of the 10 CCC-Biclusters in the top 10 and can thus be filtered efficiently using the similarity measure described in Section V-B.

In this context, we used the yeast cell-cycle dataset publicly available [5], described by Tavazoie et al. [38] and processed by Cheng and Church [6]. We used 2884 genes selected by Cheng and Church [6] and removed the ORFS with missing values and the ones that no longer exist in SGD (Saccharomyces Genome Database). As in [42] we set the parameters \(\alpha \) and \(\beta \) to 300 and 1.2, respectively, and used their algorithm in the matrix with the remaining genes to find 100 biclusters. In order to apply CCC-Biclustering we first discretized this preprocessed matrix using the technique based on transitions between time-points proposed by Ji and Tan [11], [12] and described in Section III-A\(^5\).

In Table III we report the sizes and the mean squared residue \((MSR)\) for the top 5 biclusters (evaluated by the \(MSR \), which is the merit function minimized in CC-TSB algorithm) obtained by each method. In the case of CCC-Biclustering, when sorting by \(MSR \) was used, and in order to avoid the discovery of CCC-Biclusters with small number of genes corresponding to small matrices with a small \(MSR \), we filtered those with less than 20 genes. We report also the top 5 CCC-Biclusters discovered by sorting the results using the \(p \)-value described in Section V-A and filtering CCC-Biclusters with similarities above 25\%. These results show that the statistical significance test used for CCC-Biclusters is able to find highly significant expression patterns shared by a relatively large number of genes with a small \(MSR \).

The results obtained using the CC-TSB algorithm show that the heuristic proposed by Zhang et al. is not effective. In fact, the restriction imposed on the columns that can be removed makes the algorithm converge rapidly to a local minimum, from which it does not escape. The obtained values of \(MSR \) show clearly the weakness of the method. Moreover, the method converges to biclusters with a high number of columns, which are, in most cases, all the columns in the dataset. This means this algorithm is in fact looking for gene clusters, and not biclusters, which makes it useless for the purposes of identifying local patterns.

B. Application to the Identification of Regulatory Modules

To assess the biological relevance of CCC-Biclusters in real data, we used a dataset from Gasch et al. [9], concerning the yeast response to heat shock. This dataset comprises 5 different time-points along the first hour of exposure to 37°C (0’, 5’, 15’, 30’ and 60’). The first time-point is an average of three replicates of time zero. The dataset was preprocessed as in Section VII-A.

Since we were interested in CCC-Biclusters with high statistical significance the set of 167 maximal CCC-Biclusters discovered (using 1.7 seconds of a 2.2 GHz Intel Core 2 Duo) was then sorted in ascending order according to the statistical \(p \)-value described in Section V-A. From these only 25 were considered as highly significant at the 1% level after applying the Bonferroni correction for multiple testing. In order to avoid the analysis of highly overlapping CCC-Biclusters, we then computed the similarities between the sorted CCC-Biclusters using the Jaccard similarity score, as described in Section V-B, and filtered CCC-Biclusters with similarity greater than 25\%. This filtering process removed 9 of the 25 CCC-Biclusters originally selected.

\(^5\)Before the discretization, we normalize the data to zero mean and unit standard deviation, as described in Section III-A. However, and in order to compare our results with those of the CC-TSB algorithm (which computes the \(MSR \) values using the original values in \(A’ \)), we computed the \(MSR \) values for the CCC-Biclusters presented in Table III using the original (not normalized) expression values in \(A’ \). We also set the threshold \(t \) to the standard deviation value \((t = 1)\).
Table IV shows a summary of the remaining 16 CCC-Biclusters analyzed using the Gene Ontology (GO) annotations obtained using the GoToolBox [25]. To perform the analysis for functional enrichment we used the p-values obtained using the hypergeometric distribution to access the over-representation of a specific GO term. In order to consider a CCC-Bicluster to be highly significant, we require its genes to show highly significant enrichment in one or more of the “biological process” ontology terms by having a Bonferroni corrected p-value below 0.01. A CCC-Bicluster is considered as significant if at least one of the GO terms analyzed is significantly enriched by having a (Bonferroni corrected) p-value in the interval [0.01, 0.05]⁶.

From these 16 CCC-Biclusters, six (Tables V and VI) were analyzed in more detail, corresponding to chronological expression patterns selected as described below (Figs 3 and 4). For these CCC-Biclusters, selected for describing either transcriptional up-regulation or down-regulation patterns, we analyzed in detail the Gene Ontology annotations together with information about transcriptional regulation available in the YEASTRACT

⁶Note that, although we only consider as functionally enriched the terms with Bonferroni corrected p-values below 0.01 (for high statistical significance), or below 0.05 (for statistical significance), the p-values presented in the text are without correction.
database [39].

1) CCC-Biclusters describing Transcriptional Up-Regulation Patterns: The first three CCC-Biclusters analyzed include genes whose expression was up-regulated (1) abruptly during the first 5 minutes of exposure (CCC-Bicluster 39, with 258 genes), (2) slowly during the first 15 minutes of exposure (CCC-Bicluster 27, with 291 genes) and (3) with a short delay, between 5 and 15 minutes of exposure (CCC-Bicluster 14, with 1091 genes) (See Fig. 3 for details).

The analysis of the first bicluster (CCC-Bicluster 39) using the GOToolBox revealed that there are no GO terms with a (Bonferroni corrected) p-value below or equal to 0.01 associated to this specific gene list (Table V). This may occur as a consequence of an unspecific wide initial response to stress, in which the transcription of a number of genes, belonging to a large number of different biological functions, is up-regulated. It is, nonetheless, noteworthy that the most significant terms associated to this bicluster are “signal transduction” (p-value 1.65E-04) and “regulation of transcription from RNA polymerase II promoter” (p-value 2.80E-02). This conclusion is consistent with the activation during the first 5 minutes following yeast exposure to heat shock of signaling cascades and transcription factors associated the transcriptional machinery, which will mediate stress specific responses in the subsequent time-points.

A similar GO-based analysis of the second and third biclusters (CCC-Biclusters 27 and 14), also presented in Table V, reveals the occurrence of highly significant terms, including “carbohydrate metabolism” (p-values 7.33E-08 and 4.87E-21) or “energy derivation by oxidation of organic compounds” (p-values 3.60E-06 and 3.92E-20), related to energy generation, and “response to stimulus” (p-values 3.28E-08 and 1.51E-16) or “response to stress” (p-values 4.88E-06 and 1.02E-15), related to the cellular response to heat shock. These terms are consistent with the induction of protein folding chaperones aiming at protecting against, and recovering from, protein unfolding with associated energetic expenses. The transcriptional induction of genes involved in alternative carbon source metabolism and respiration, in the presence of glucose, is considered a consequence of a sudden decrease in cellular ATP concentration, caused by ATP-consuming stress defense mechanisms [9].

Using the computational tools from the YEASTRACT database [39], each of the three referred CCC-Biclusters was grouped based on the sharing of specific transcriptional regulators mediating the co-regulation of clustered genes. As expected, based on the literature, the heat-shock factor Hsf1p comes out as one of the major regulators of these three biclusters, regulating 16%, 23% and 19% of the genes in biclusters 39, 27 and 14, respectively. Moreover, in agreement with previous knowledge, Msn2p and Msn4p, regulators of the general stress response in yeast, appear as major contributors to the heat-induced transcriptional activation, regulating 14%, 21% and 19% of the genes in each of the biclusters, respectively [13]. A third transcription factor also presumably implicated in the regulation of the three biclusters is Rpn4p, regulating 14%, 18% and 18% of the genes in each of the biclusters, respectively. This transcription factor stimulates the expression of the proteasome genes, involved in the degradation of denatured or unnecessary proteins in stressed yeast cells [9].

Although the transcription factors regulating the three temporal stages of heat-shock induced co-activated transcription are apparently the same, the majority of the genes in each of the three CCC-Biclusters do not overlap. As an example, the Hsf1p-target heat shock genes seem to be activated at different time-points: as a more drastic response HSP10 and HSP42 are up-regulated within the first 5 minutes of heat shock, while HSP104, HSP26, HSP78, SSA4 and SSE2 transcript levels are only maximal after 15 minutes of heat shock and the expression of HSC82, HSP28, SSA1, SSA2, SSA3, SSC1, SSE1, CPR6 and STT11 only increases between 5 and 15 minutes of heat shock exposure. This may suggest that these sets of chaperones play their roles at different times of the adaptive process. It also suggests that each transcription factor may act on different target genes in different temporal states.

2) CCC-Biclusters describing Transcriptional Down-Regulation Patterns: The remaining three CCC-Biclusters analyzed include genes whose expression was down-regulated (1) and (2) abruptly during the first 5 minutes of exposure (CCC-Biclusters 147, comprising 144 genes, and 151, comprising 232 genes), and (3) with a short delay, between 5 and 15 minutes of exposure (CCC-Bicluster 124, comprising 904 genes). See Fig. 4 for details.

The GO-based analysis of CCC-Bicluster 147 indicates that there are no GO terms with a (Bonferroni corrected) p-value below 0.01 associated to this specific gene list (See Table VI). However, it is interesting to observe that the most significant terms associated with CCC-Bicluster 147 include “protein amino acid glycosylation” (p-value 1.03E-03), “glycoprotein biosynthesis” (p-value 1.48E-03) and “steroid biosynthesis” (p-value 3.78E-03). Indeed, steroid/sterol biosynthesis and glycoprotein biosynthesis are linked to plasma membrane and cell wall reconfiguration, which are important aspects of the heat shock response [36] and appear in this profile to be among the first steps of yeast adaptation to heat shock.

Also shown in Table VI is the fact that the genes in CCC-Bicluster 151 are associated by GOToolBox, with high significance, to GO terms such “cell organization and biogenesis” (p-values 6.95E-08), “cell cycle” (p-value 1.30E-07) and “mitotic cell cycle” (p-value 3.32E-06), suggesting cell cycle repression, which is in agreement with growth arrest upon sudden exposure to 37°C. This is consistent with the fact that 16.5% and 12.4% of the down-regulated genes in this CCC-Bicluster are documented targets of the transcription factors Swi4p and Mbp1p, respectively, both forming complexes with Swi6p to control cell cycle G1-S transition. Finally, CCC-Bicluster 162 comprises a number of genes involved in RNA and protein synthesis (see Table VI for details). GO terms such as “RNA processing” (p-value 6.65E-38) or “ribosome biogenesis” (p-value 8.23E-63) appear among the most significant GO terms associated to this CCC-Bicluster. Indeed, the inhibition of ribosome biosynthesis and the repression of rRNA synthesis, associated with the general stress response program, is also a feature of the heat shock response [9]. In agreement with this observation, the transcription factors Sfp1p and Rap1, associated with ribosome biogenesis and rRNA synthesis, appear as the main regulators of these two CCC-Biclusters.
This brief overview of the biological significance of the CCC-Biclusters, generated with real data, shows that this method is able to point out the major aspects of a given transcriptional response. In this particular case, the previously identified transcriptional regulons and biological processes underlying the yeast heat shock response emerged from this biclustering analysis. This analysis further emphasizes the importance of obtaining time-course expression profiles to fully understand the several steps that constitute a given stress response and of using suitable computational methods, such as the one described herein. In this analysis we were able to differentiate a number of different expression profiles, contributing to scrutinize, step by step, the yeast cell response to heat shock. Being a thoroughly studied theme, the conclusions from this analysis were not surprising but support the idea that CCC-Biclustering is a powerful tool for the analysis of time-course global expression data.

VIII. CONCLUSIONS AND FUTURE WORK
This work opened several promising directions for future research. The most immediate direction for development is related with the discovery of imperfect CCC-Biclusters, that is, CCC-Biclusters allowing up to a given number of errors per gene relatively to the string that defines the CCC-Bicluster [24].

Extending the algorithm to handle time-lagged CCC-Biclusters is also a possibility that will be analyzed if the question of
time-lagging activation is deemed relevant to the identification of regulatory networks.

The most promising direction for medium and long term research is, however, related with the development of methods for the identification of regulatory networks that use the information about co-regulated genes obtained using biclustering algorithms. This will require the integration of information from different sources, that include gene expression, sequence data and information from the scientific literature. We believe this problem is one of the most important and challenging problems that will be addressed in this area in the coming decade.

NOTES

Parts of this work have appeared previously in [23]. However, the statistical methods for ranking CCC-Biclusters, the filtering method for removing highly overlapping biclusters, and the experimental validation with real data is original.

The software described in this paper, as well as the datasets and examples used is available at http://www.inesc-id.pt/kdbio/software/CCC-Biclustering. This web page will be updated in order to provide documentation related to the use of the software, and an user-friendly interface to CCC-Biclustering enabling an intuitive use of the algorithm in real datasets.

This work was partially supported by projects POSI/SRI/47778/2002, BioGrid, POSI/EIA/57398/2004, DBYeast, and POSI/BIO/56838/2004 financed by FCT, Fundação para a Ciência e Tecnologia, and the POSI program.

REFERENCES

<table>
<thead>
<tr>
<th>ID</th>
<th>Pattern</th>
<th>TFs</th>
<th>%</th>
<th>Relevant GO Terms Enriched</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>147</td>
<td>Early drastic down-regulation, followed by rapid up-regulation</td>
<td>Ste1p, Rap1p, Swi4p, Rpn4p, Ino4p</td>
<td>16.67</td>
<td>regulation of progression through mitotic cell cycle, steroid biosynthesis, biopolymer glycosylation,</td>
<td>4.46E-05*</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>protein amino acid glycosylation, steroid metabolism, protein targeting to ER, glycoprotein biosynthesis,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>sterol biosynthesis, glycoprotein metabolism</td>
<td></td>
</tr>
<tr>
<td>151</td>
<td>Early drastic down-regulation, followed by late up-regulation</td>
<td>Mbp1p, Arr1p, Rpn4p, Ino4p</td>
<td>12.37</td>
<td>cell organization and biogenesis, cell cycle, nucleobase, nucleoside, nucleotide and nucleic acid metabolism, biopolymer metabolism, mitotic cell cycle, regulation of biological process, regulation of physiological process</td>
<td>6.95E-08</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>124</td>
<td>Delayed down-regulation</td>
<td>Sfp1p, Rap1p, Rpn4p, Arr1p, Fhl1p</td>
<td>33.00</td>
<td>ribosome biogenesis, ribosome biogenesis and assembly, cytoplasm organization and biogenesis, RNA processing, RNA metabolism, RNA processing, RNA metabolism, organelle organization and biogenesis, nucleobase, nucleoside, nucleotide and nucleic acid metabolism, cell organization and biogenesis</td>
<td>8.23E-63</td>
</tr>
</tbody>
</table>

TABLE VI
CCC-Biclusters describing transcriptional down-regulated patterns

